Identification of an active dimeric intermediate populated during the unfolding process of the cambialistic superoxide dismutase from Streptococcus mutans
Identification of an active dimeric intermediate populated during the unfolding process of the cambialistic superoxide dismutase from Streptococcus mutans(353 views) Merlino A, Russo Krauss I, Rossi B, De Vendittis A, Marco S, De Vendittis E, Vergara A, Sica F
Dipartimento di Chimica, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy
Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy
Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, Via Pansini 5, I-80131 Napoli, Italy
References: Matthews, C.R., Pathway of protein folding (1993) Annu. Rev. Biochem., 62, pp. 653-68
Neet, K.E., Timm, D.E., Conformational stability of dimeric proteins: Quantitative studies by equilibrium denaturation (1994) Protein Sci., 3, pp. 2167-2174
Rumfeldt, J.A., Galvagnion, C., Vassall, K.A., Meiering, E.M., Conformational stability and folding mechanisms of dimeric proteins (2008) Prog. Biophys. Mol. Biol., 98, pp. 61-84
Kim, P.S., Baldwin, R.L., Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding (1982) Annu. Rev. Biochem., 51, pp. 459-489
Doyle, S.M., Braswell, E.H., Teschke, C.M., SecA folds via a dimeric intermediate (2000) Biochemistry, 39, pp. 11667-11676
Bose, K., Clark, A.C., Dimeric procaspase-3 unfolds via a four-state equilibrium process (2001) Biochemistry, 40 (47), pp. 14236-14242. , DOI 10.1021/bi0110387
Chanez-Cardenas, M.E., Perez-Hernandez, G., Sanchez-Rebollar, B.G., Costas, M., Vazquez-Contreras, E., Reversible equilibrium unfolding of triosephosphate isomerase from Trypanosoma cruzi in guanidinium hydrochloride involves stable dimeric and monomeric intermediates (2005) Biochemistry, 44 (32), pp. 10883-10892. , DOI 10.1021/bi047687a
Gildenhuys, S., Wallace, L.A., Burke, J.P., Balchin, D., Sayed, Y., Dirr, H.W., Class Pi glutathione transferase unfolds via a dimeric and not monomeric intermediate: Functional implications for an unstable monomer (2010) Biochemistry, 49, pp. 5074-5081
McCord, J.M., Fridovich, I., Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein) (1969) J. Biol. Chem., 244, pp. 6049-6055
Culotta, V.C., Yang, M., O'Halloran, T.V., Activation of superoxide dismutases: Putting the metal to the pedal (2006) Biochimica et Biophysica Acta - Molecular Cell Research, 1763 (7), pp. 747-758. , DOI 10.1016/j.bbamcr.2006.05.003, PII S0167488906001108
Miller, A.F., Superoxide dismutases: Active sites that save, but a protein that kills (2004) Curr. Opin. Chem. Biol., 8, pp. 162-168
Stallings, W.C., Pattridge, K.A., Strong, R.K., Ludwig, M.L., Manganese and iron superoxide dismutases are structural homologs (1984) Journal of Biological Chemistry, 259 (17), pp. 10695-10699
Rumfeldt, J.A.O., Stathopulos, P.B., Chakrabarrty, A., Lepock, J.R., Meiering, E.M., Mechanism and thermodynamics of guanidinium chloride-induced denaturation of ALS-associated mutant Cu,Zn superoxide dismutases (2006) Journal of Molecular Biology, 355 (1), pp. 106-123. , DOI 10.1016/j.jmb.2005.10.042, PII S0022283605012866
Mei, G., Rosato, N., Silva, Jr.N., Rusch, R., Gratton, E., Savini, I., Finazzi-Agro, A., Denaturation of human Cu/Zn superoxide dismutase by guanidine hydrochloride: A dynamic fluorescence study (1992) Biochemistry, 31, pp. 7224-7230
Stroppolo, M.E., Malvezzi-Campeggi, F., Mei, G., Rosato, N., Desideri, A., Role of the tertiary and quaternary structures in the stability of dimeric copper,zinc superoxide dismutases (2000) Archives of Biochemistry and Biophysics, 377 (2), pp. 215-218. , DOI 10.1006/abbi.2000.1780
Miller, A.F., (2001) Handbook of Metalloproteins, , A. Messerschimdt, R. Huber, K. Wieghardt, T. Paulos, Wiley and Sons Chicester
Stroupe, M.E., Di Donato, M., Tainer, J.A., (2001) Handbook of Metalloproteins, , A. Messerschimdt, R. Huber, K. Wieghardt, T. Paulos, Wiley and Sons Chicester
Wang, S., Liu, W.F., He, Y.Z., Zhang, A., Huang, L., Dong, Z.Y., Yan, Y.B., Multistate folding of a hyperthermostable Fe-superoxide dismutase (TcSOD) in guanidinium hydrochloride: The importance of the quaternary structure (2008) Biochim. Biophys. Acta, 1784, pp. 445-454
Pedersen, H.L., Willassen, N.P., Leiros, I., The first structure of a cold-adapted superoxide dismutase (SOD): Biochemical and structural characterization of iron SOD from Aliivibrio salmonicida (2009) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 65, pp. 84-92
Merlino, A., Russo Krauss, I., Castellano, I., De Vendittis, E., Rossi, B., Conte, M., Vergara, A., Sica, F., Structure and flexibility in cold-adapted iron superoxide dismutases: The case of the enzyme isolated from Pseudoalteromonas haloplanktis (2010) J. Struct. Biol., 172, pp. 343-352
De Vendittis, A., Amato, M., Mickniewicz, A., Parlato, G., De Angelis, A., Castellano, I., Rullo, R., De Vendittis, E., Regulation of the properties of superoxide dismutase from the dental pathogenic microorganism Streptococcus mutans by iron- and manganese-bound co-factor (2010) Mol. Biosyst., 6, pp. 1973-1982
Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254
Dello Russo, A., Rullo, R., Nitti, G., Masullo, M., Bocchini, V., Iron superoxide dismutase from the archaeon Sulfolobus solfataricus: Average hydrophobicity and amino acid weight are involved in the adaptation of proteins to extreme environments (1997) Biochimica et Biophysica Acta - Protein Structure and Molecular Enzymology, 1343 (1), pp. 23-30. , DOI 10.1016/S0167-4838(97)00105-2, PII S0167483897001052
Whitmore, L., Wallace, B.A., DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data (2004) Nucleic Acids Research, 32, pp. W668-W673. , DOI 10.1093/nar/gkh371
Liu, P., Ewis, H.E., Huang, Y.-J., Lu, C.-D., Tai, P.C., Weber, I.T., Structure of Bacillus subtilis superoxide dismutase (2007) Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 63 (12), pp. 1003-1007. , DOI 10.1107/S1744309107054127, PII S1744309107054127
Jones, T.A., Zou, J.Y., Cowan, S.W., Kjeldgaard, M., Improved methods for building protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr. A, 47 (PART 2), pp. 110-119
Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.C., GROMACS: Fast, flexible, and free (2005) Journal of Computational Chemistry, 26 (16), pp. 1701-1718. , DOI 10.1002/jcc.20291
Merlino, A., Esposito, L., Vitagliano, L., Polyglutamine repeats and β-helix structure: Molecular dynamics study (2006) Proteins: Structure, Function and Genetics, 63 (4), pp. 918-927. , DOI 10.1002/prot.20941
Porcelli, M., Moretti, M.A., Concilio, L., Forte, S., Merlino, A., Graziano, G., Cacciapuoti, G., S-adenosylhomocysteine hydrolase from the archaeon Pyrococcus furiosus: Biochemical characterization and analysis of protein structure by comparative molecular modeling (2005) Proteins: Structure, Function and Genetics, 58 (4), pp. 815-825. , DOI 10.1002/prot.20381
Pizzo, E., Merlino, A., Turano, M., Russo Krauss, I., Coscia, F., Zanfardino, A., Varcamonti, M., D'Alessio, G., A new RNase sheds light on the RNase/angiogenin subfamily from zebrafish (2011) Biochem. J., 433, pp. 345-355
Castellano, I., Merlino, A., Rossi, M., La Cara, F., Biochemical and structural properties of gamma-glutamyl transpeptidase from Geobacillus thermodenitrificans: An enzyme specialized in hydrolase activity (2010) Biochimie, 92, pp. 464-474
Castellano, I., Di Salle, A., Merlino, A., Rossi, M., La Cara, F., Gene cloning and protein expression of gamma-glutamyltranspeptidases from Thermus thermophilus and Deinococcus radiodurans: Comparison of molecular and structural properties with mesophilic counterparts (2011) Extremophiles, 15, pp. 259-270
Wiederstein, M., Sippl, M.J., ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins (2007) Nucleic Acids Res., 35, pp. W407-W410
Padros, E., Morros, A., Manosa, J., Dunach, M., The state of tyrosine and phenylalanine residues in proteins analyzed by fourth-derivative spectrophotometry. Histone H1 and ribonuclease A (1982) Eur. J. Biochem., 127, pp. 117-122
Dunach, M., Sabes, M., Padros, E., Fourth-derivative spectrophotometry analysis of tryptophan environment in proteins. Application to melittin, cytochrome c and bacteriorhodopsin (1983) Eur. J. Biochem., 134, pp. 123-128
Wang, S., Yan, Y., Dong, Z., Contributions of the C-terminal helix to the structural stability of a hyperthermophilic Fe-superoxide dismutase (TcSOD) (2009) Int. J. Mol. Sci., 10, pp. 5498-5512
Cooper, J.B., Saward, S., Erskine, P.T., Badasso, M.O., Wood, S.P., Zhang, Y., Young, D., X-ray structure analysis of an engineered Fe-superoxide dismutase Gly-Ala mutant with significantly reduced stability to denaturant (1996) FEBS Letters, 387 (2-3), pp. 105-108. , DOI 10.1016/0014-5793(96)00490-5
Hsieh, H.C.K., Chiu, C.C., Yu, C., Equilibrium unfolding of a oligomeric protein involved the formation of multimeric intermediate state (2005) Biochem. Biophys. Res. Commun., 326, pp. 108-114
Liujiao, B., Than, Z., Xiaoyani, Y., Li, L., Xiaohui, Z., Unfolding of bovine heart cytochrome c induced by urea and guanidine hydrochloride (2011) Chin. J. Chem., 29, pp. 813-821
Matthews, C. R., Pathway of protein folding (1993) Annu. Rev. Biochem., 62, pp. 653-68
Neet, K. E., Timm, D. E., Conformational stability of dimeric proteins: Quantitative studies by equilibrium denaturation (1994) Protein Sci., 3, pp. 2167-2174
Rumfeldt, J. A., Galvagnion, C., Vassall, K. A., Meiering, E. M., Conformational stability and folding mechanisms of dimeric proteins (2008) Prog. Biophys. Mol. Biol., 98, pp. 61-84
Kim, P. S., Baldwin, R. L., Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding (1982) Annu. Rev. Biochem., 51, pp. 459-489
Doyle, S. M., Braswell, E. H., Teschke, C. M., SecA folds via a dimeric intermediate (2000) Biochemistry, 39, pp. 11667-11676
McCord, J. M., Fridovich, I., Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein) (1969) J. Biol. Chem., 244, pp. 6049-6055
Culotta, V. C., Yang, M., O'Halloran, T. V., Activation of superoxide dismutases: Putting the metal to the pedal (2006) Biochimica et Biophysica Acta - Molecular Cell Research, 1763 (7), pp. 747-758. , DOI 10. 1016/j. bbamcr. 2006. 05. 003, PII S0167488906001108
Miller, A. F., Superoxide dismutases: Active sites that save, but a protein that kills (2004) Curr. Opin. Chem. Biol., 8, pp. 162-168
Stallings, W. C., Pattridge, K. A., Strong, R. K., Ludwig, M. L., Manganese and iron superoxide dismutases are structural homologs (1984) Journal of Biological Chemistry, 259 (17), pp. 10695-10699
Rumfeldt, J. A. O., Stathopulos, P. B., Chakrabarrty, A., Lepock, J. R., Meiering, E. M., Mechanism and thermodynamics of guanidinium chloride-induced denaturation of ALS-associated mutant Cu, Zn superoxide dismutases (2006) Journal of Molecular Biology, 355 (1), pp. 106-123. , DOI 10. 1016/j. jmb. 2005. 10. 042, PII S0022283605012866
Stroppolo, M. E., Malvezzi-Campeggi, F., Mei, G., Rosato, N., Desideri, A., Role of the tertiary and quaternary structures in the stability of dimeric copper, zinc superoxide dismutases (2000) Archives of Biochemistry and Biophysics, 377 (2), pp. 215-218. , DOI 10. 1006/abbi. 2000. 1780
Miller, A. F., (2001) Handbook of Metalloproteins, , A. Messerschimdt, R. Huber, K. Wieghardt, T. Paulos, Wiley and Sons Chicester
Stroupe, M. E., Di Donato, M., Tainer, J. A., (2001) Handbook of Metalloproteins, , A. Messerschimdt, R. Huber, K. Wieghardt, T. Paulos, Wiley and Sons Chicester
Wang, S., Liu, W. F., He, Y. Z., Zhang, A., Huang, L., Dong, Z. Y., Yan, Y. B., Multistate folding of a hyperthermostable Fe-superoxide dismutase (TcSOD) in guanidinium hydrochloride: The importance of the quaternary structure (2008) Biochim. Biophys. Acta, 1784, pp. 445-454
Pedersen, H. L., Willassen, N. P., Leiros, I., The first structure of a cold-adapted superoxide dismutase (SOD): Biochemical and structural characterization of iron SOD from Aliivibrio salmonicida (2009) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 65, pp. 84-92
Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254
Liu, P., Ewis, H. E., Huang, Y. -J., Lu, C. -D., Tai, P. C., Weber, I. T., Structure of Bacillus subtilis superoxide dismutase (2007) Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 63 (12), pp. 1003-1007. , DOI 10. 1107/S1744309107054127, PII S1744309107054127
Jones, T. A., Zou, J. Y., Cowan, S. W., Kjeldgaard, M., Improved methods for building protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr. A, 47 (PART 2), pp. 110-119
Cooper, J. B., Saward, S., Erskine, P. T., Badasso, M. O., Wood, S. P., Zhang, Y., Young, D., X-ray structure analysis of an engineered Fe-superoxide dismutase Gly-Ala mutant with significantly reduced stability to denaturant (1996) FEBS Letters, 387 (2-3), pp. 105-108. , DOI 10. 1016/0014-5793 (96) 00490-5
Hsieh, H. C. K., Chiu, C. C., Yu, C., Equilibrium unfolding of a oligomeric protein involved the formation of multimeric intermediate state (2005) Biochem. Biophys. Res. Commun., 326, pp. 108-114
Identification of an active dimeric intermediate populated during the unfolding process of the cambialistic superoxide dismutase from Streptococcus mutans
Superoxide dismutases are enzymes that protect biological systems against oxidative damage caused by superoxide radicals. In this paper, a detailed characterization is presented on the stability of SmSOD, the dimeric cambialistic superoxide dismutase from the dental pathogenic microorganism Streptococcus mutans, towards temperature and guanidine hydrochloride. Thermal and chemical denaturations were investigated by means of circular dichroism, fourth-derivative UV spectroscopy and fluorescence measurements. Data indicate that SmSOD is endowed with a significant thermostability and that both its thermal and guanidine hydrochloride-induced unfolding processes occur through a three-state model, characterized by a catalytically active dimeric intermediate species. To our knowledge, SmSOD is the smallest known dimeric protein that populates a well-structured active dimeric rather than a monomeric intermediate during unfolding processes. (C) 2011 Elsevier Masson SAS. All rights reserved.
Identification of an active dimeric intermediate populated during the unfolding process of the cambialistic superoxide dismutase from Streptococcus mutans
Identification of an active dimeric intermediate populated during the unfolding process of the cambialistic superoxide dismutase from Streptococcus mutans