Keywords: Crystallization, Membrane, New Methodologies, Nucleic Acid, Protein, Antibody, Fv Antibody, Guanine Quadruplex, Immunoglobulin F(ab) Fragment, Membrane Protein, Unclassified Drug, Batch Process, Chemical Reaction Kinetics, Complex Formation, Crystallography, Density Gradient, Electric Field, Free Interface Diffusion, Gel Counter Diffusion, Gel Crystallization, Lipid Bilayer, Macromolecule, Magnetic Field, Microdialysis, Nucleic Acid Structure, Precipitation, Protein Nucleic Acid Interaction, Review, Temperature Sensitivity, Thermostability, Water Vapor, X Ray Diffraction, Immunoglobulin F (ab) Fragment,
Affiliations: *** IBB - CNR ***
Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, Napoli I-80126, Italy
Institute of Biostructures and Bioimages, C.N.R, Via Mezzocannone 16, Napoli I-80134, Italy
References: McPherson, A., Protein crystallization in the structural genomics era (2004) J. Struct. Funct. Genomics, 5, pp. 3-1
Hoffman, I.D., Protein crystallization for structure-based drug design (2012) Methods Mol. Biol, 841, pp. 67-91
Deschamps, J.R., The role of crystallography in drug design (2005) AAPS J, 7, pp. E813-E819
Cachau, R.E., Podjarny, A.D., High-resolution crystallography and drug design (2005) J. Mol. Recognit, 18, pp. 196-202
Blundell, T.L., Patel, S., High-throughput X-ray crystallography for drug discovery (2004) Curr. Opin. Pharmacol, 4, pp. 490-496
Heinemann, U., Bussow, K., Mueller, U., Umbach, P., Facilities and methods for the high-throughput crystal structural analysis of human proteins (2003) Acc. Chem. Res, 36, pp. 157-163
Abola, E., Kuhn, P., Earnest, T., Stevens, R.C., Automation of X-ray crystallography (2000) Nat. Struct. Biol, 7, pp. 973-977
Jaskolski, M., From atomic resolution to molecular giants: An overview of crystallographic studies of biological macromolecules with synchrotron radiation (2010) Synchrotron. Radiat. Nat. Sci, 9, pp. 1-2
Bergfors, T.M., (1999) Protein Crystallization: Techniques, Strategies and Tips, , International University Line: La Jolla, CA, USA
Ducruix, A., Giege, R., (2000) Crystallization of Nucleic Acids and Proteins, a Practical Approach, , 2nd ed.
Oxford University Press: New York, NY, USA
Sauter, C., Lorber, B., McPherson, A., Giege, R., Crystallization. General methods (2012) International Tables For Crystallography: Crystallography of Biological Macromolecules, pp. 99-121. , 2nd ed.
Arnold, E., Himmel, D.M., Rossmann, M.G., Eds.
Wiley: Chichester, NH, USA
Rupp, B., (2010) Biomolecular Crystallography: Principles, Practice, and Application to Structural Biology, , Garland Publishing: New York, NY
Amorphous precipitate is the result of a disordered aggregation of folded molecules, it is usually white and could still give crystals, differently from precipitate of denaturated proteins, which forms in conditions where the native state is not stable. Moreover some precipitates are actually formed by submicroscopic crystals (microcrystalline precipitate)McPherson, A., (1999) Crystallization of Biological Macromolecules, , Cold Spring Harbor Laboratory Press: Cold Spring Harbor: New York, NY, USA
McPherson, A., Introduction to protein crystallization (2004) Methods, 34, pp. 254-265
Kelly, S.M., Price, N.C., The use of circular dichroism in the investigation of protein structure and function (2000) Curr. Protein Pept. Sci, 1, pp. 349-384
George, A., Chiang, Y., Guo, B., Arabshahi, A., Cai, Z., Wilson, W.W., Second virial coefficient as predictor in protein crystal growth (1997) Methods Enzymol, 276, pp. 100-110
George, A., Wilson, W.W., Predicting protein crystallization from a dilute solution property (1994) Acta Crystallogr. D, 50, pp. 361-365
Bonnete, F., Vivares, D., Interest of the normalized second virial coefficient and interaction potentials for crystallizing large macromolecules (2002) Acta Crystallogr. D, 58, pp. 1571-1575
Deszczynski, M., Harding, S.E., Winzor, D.J., Negative second virial coefficients as predictors of protein crystal growth: Evidence from sedimentation equilibrium studies that refutes the designation of those light scattering parameters as osmotic virial coefficients (2006) Biophys. Chem, 120, pp. 106-113
Berne, B.J., Pecora, R., (2000) Dynamic Light Scattering With Applications to Chemistry, Biology, and Physics, , John Wiley & Sons: New York, NY, USA
Pecora, R., (1985) Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy, , Plenum Press: New York, NY, USA
Saridakis, E., Dierks, K., Moreno, A., Dieckmann, M.W., Chayen, N.E., Separating nucleation and growth in protein crystallization using dynamic light scattering (2002) Acta Crystallogr. D, 58, pp. 1597-1600
Rosenberger, F., Howard, S.B., Sowers, J.W., Nyce, T.A., Temperature dependence of protein solubility: Determination and application to crystallization in X-ray capillaries (1993) J. Cryst. Growth, 129, pp. 1-12
Chernov, A.A., Komatsu, H., Principles of Crystal Growth in Protein Crystallization (1995) Science and Technology of Crystal Growth, , van der Eerden, J.P., Bruinsma, O.S.L., Eds.
Kluwer Academic Publishers: Dordrecht, The Netherlands
Dumetz, A.C., Chockla, A.M., Kaler, E.W., Lenhoff, A.M., Effects of pH on protein-protein interactions and implications for protein phase behavior (2008) Biochim. Biophys. Acta, 1784, pp. 600-610
Kantardjieff, K.A., Rupp, B., Protein isoelectric point as a predictor for increased crystallization screening efficiency (2004) Bioinformatics, 20, pp. 2162-2168
Dupeux, F., Rower, M., Seroul, G., Blot, D., Marquez, J.A., A thermal stability assay can help to estimate the crystallization likelihood of biological samples (2011) Acta Crystallogr. D, 67, pp. 915-919
Malawski, G.A., Hillig, R.C., Monteclaro, F., Eberspaecher, U., Schmitz, A.A., Crusius, K., Huber, M., Muller-Tiemann, B., Identifying protein construct variants with increased crystallization propensity-a case study (2006) Protein Sci, 15, pp. 2718-2728
Ericsson, U.B., Hallberg, B.M., Detitta, G.T., Dekker, N., Nordlund, P., Thermofluor-based high-throughput stability optimization of proteins for structural studies (2006) Anal. BioChem, 357, pp. 289-298
Doerr, A., Widening the protein crystallization bottleneck (2006) Nat. Methods, 3, p. 961
Hofmeister, F., Zur Lehre von der Wirkung der Salze (About the science of the effect of salts) (1888) Arch. Exp. Pathol. Pharmakol, 24, pp. 247-260
McPherson, A., Crystallization of proteins from polyethylene glycol (1976) J. Biol. Chem, 251, pp. 6300-6303
Majeed, S., Ofek, G., Belachew, A., Huang, C.C., Zhou, T., Kwong, P.D., Enhancing protein crystallization through precipitant synergy (2003) Structure, 11, pp. 1061-1070
McPherson, A., Nguyen, C., Cudney, R., Larson, S.B., The role of small molecule additives and chemical modification in protein crystallization (2011) Cryst. Growth Des, 11, pp. 1469-1474
McPherson, A., (1982) The Preparation and Analysis of Protein Crystals, , John Wiley and Sons: New York, NY, USA
Piazza, R., Pierno, M., Protein interactions near crystallization: A microscopic approach to the Hofmeister series (2000) J. Phys. Condens. Matter, 12, pp. A443-A449
Zhang, Y., Cremer, P.S., Interactions between macromolecules and ions: The Hofmeister series (2006) Curr. Opin. Chem. Biol, 10, pp. 658-663
Hekmat, D., Hebel, D., Joswig, S., Schmidt, M., Weuster-Botz, D., Advanced protein crystallization using water-soluble ionic liquids as crystallization additives (2007) Biotechnol. Lett, 29, pp. 1703-1711
Judge, R.A., Takahashi, S., Longenecker, K.L., Fry, E.H., Abad-Zapatero, C., Chiu, M.L., The effect of ionic liquids on protein crystallization and X-ray diffraction resolution (2009) Cryst. Growth Des, 9, pp. 3463-3469
Larson, S.B., Day, J.S., Cudney, R., McPherson, A., A novel strategy for the crystallization of proteins: X-ray diffraction validation (2007) Acta Crystallogr. D, 63, pp. 310-318
Sauter, C., Ng, J.D., Lorber, B., Keith, G., Brion, P., Hosseini, M.W., Lehn, J.-M., Giege, R., Additives for the crystallization of proteins and nucleic acids (1999) J. Cryst. Growth, 196, pp. 365-376
Shim, J.U., Cristobal, G., Link, D.R., Thorsen, T., Fraden, S., Using microfluidics to decouple nucleation and growth of protein crystals (2007) Cryst. Growth Des, 7, pp. 2192-2194
Tanaka, S., Ataka, M., Ito, K., Pattern formation and coarsening during metastable phase separation in lysozyme solutions (2002) Phys. Rev. E, 65, p. 051804
Sica, F., Adinolfi, S., Berisio, R., de Lorenzo, C., Mazzarella, L., Piccoli, R., Vitagliano, L., Zagari, A., Crystallization of multiple forms of bovine seminal ribonuclease in the liganded and unliganded state (1999) J. Cryst. Growth, 196, pp. 305-312
Sousa, R., Use of glycerol, polyols and other protein structure stabilizing agents in protein crystallization (1995) Acta Crystallogr. D, 51, pp. 271-277
Tomčová, I., Branca, R.M., Bodo, G., Bagyinka, C., Smatanová, I.K., Cross-crystallization method used for the crystallization and preliminary diffraction analysis of a novel di-haem cytochrome c4 (2006) Acta Crystallogr. Sect. F, 62, pp. 820-824
Tomčová, I., Smatanová, I.K., Copper co-crystallization and divalent metal salts cross-influence effect: A new optimization tool improving crystal morphology and diffraction quality (2007) J. Cryst. Growth, 306, pp. 383-389
Kundrot, C.E., Judge, R.A., Pusey, M.L., Snell, E.H., Microgravity and macromolecular crystallography (2001) Cryst. Growth Des, 1, pp. 87-99
Otalora, F., Novella, M.L., Gavira, J.A., Thomas, B.R., Garcia, R.J.M., Experimental evidence for the stability of the depletion zone around a growing protein crystal under microgravity (2001) Acta Crystallogr. D, 57, pp. 412-417
Wakayama, N.I., Yin, D.C., Harata, K., Kiyoshi, T., Fujiwara, M., Tanimoto, Y., Macromolecular crystallization in microgravity generated by a superconducting magnet (2006) Ann. N. Y. Acad. Sci, 1077, pp. 184-193
Vergara, A., Lorber, B., Sauter, C., Giege, R., Zagari, A., Lessons from crystals grown in the advanced protein crystallisation facility for conventional crystallisation applied to structural biology (2005) Biophys. Chem, 118, pp. 102-112
Sazaki, G., Crystal quality enhancement by magnetic fields (2009) Prog. Biophys. Mol. Biol, 101, pp. 45-55
Yin, D.C., Wakayama, N.I., Harata, K., Fujiwara, M., Kiyoshi, T., Wada, H., Niimura, N., Tanimoto, Y., Formation of protein crystals (orthorhombic lysozyme) in quasi-microgravity environment obtained by superconducting magnet (2004) J. Cryst. Growth, 270, pp. 184-191
Okada, H., Hirota, N., Matsumoto, S., Wada, H., Simulation of fluid flow during protein crystal growth in magnetic fields (2011) J. Appl. Phys, 110, pp. 043903-043906
Ataka, M., Katoh, E., Wakayama, N.I., Magnetic orientation as a tool to study the initial stage of crystallization of lysozyme (1997) J. Cryst. Growth, 173, pp. 592-596
Gavira, J.A., Garcia-Ruiz, J.M., Effects of a magnetic field on lysozyme crystal nucleation and growth in a diffusive environment (2009) Cryst. Growth Design, 9, pp. 2610-2615
Penkova, A., Pan, W., Hodjaoglu, F., Vekilov, P.G., Nucleation of protein crystals under the influence of solution shear flow (2006) Ann. N. Y. Acad. Sci, 1077, pp. 214-231
Koizumi, H., Uda, S., Fujiwara, K., Nozawa, J., Control of effect on the nucleation rate for hen egg white lysozyme crystals under application of an external ac electric field (2011) Langmuir, 27, pp. 8333-8338
Koizumi, H., Fujiwara, K., Uda, S., Control of nucleation rate for tetragonal hen-egg white lysozyme crystals by application of an electric field with variable frequencies (2009) Cryst. Growth Des, 9, pp. 2420-2424
Taleb, M., Didierjean, C., Jelsch, C., Mangeot, J.P., Aubry, A., Equilibrium kinetics of lysozyme crystallization under an external electric field (2001) J. Cryst. Growth, 232, pp. 250-255
Nanev, C.N., Penkova, A., Nucleation of lysozyme crystals under external electric and ultrasonic fields (2001) J. Cryst. Growth, 232, pp. 285-293
Charron, C., Didierjean, C., Mangeot, J.P., Aubry, A., The "Octopus" plate for protein crystallization under an electric field (2003) J. Appl. Crystallogr, 36, pp. 1482-1483
Mirkin, N., Frontana-Uribe, B.A., Rodriguez-Romero, A., Hernandez-Santoyo, A., Moreno, A., The influence of an internal electric field upon protein crystallization using the gel-acupunture method (2003) Acta Crystallogr. D, D59, pp. 1533-1538
Al-Haq, M.I., Lebrasseur, E., Choi, W.-K., Tsuchiya, H., Torii, T., Yamazaki, H., Shinohara, E., An apparatus for electric-field-induced protein crystallization (2007) J. Appl. Crystallogr, 40, pp. 199-201
Sazaki, G., Moreno, A., Nakajima, K., Novel coupling effects of the magnetic and electric fields on protein crystallization (2004) J. Cryst. Growth, 262, pp. 499-502
Hammadi, Z., Veesler, S., New approaches on crystallization under electric fields (2009) Progr. Biophys. Mol. Biol, 101, pp. 38-44
Gutiérrez-Quezada, A.E., Arreguín-Espinosa, R., Moreno, A., Natarajan, S., Kalkura, S.N., Celestian, A.J., Parise, J.B., Vedda, A., Special Topics in Crystal Growth (2010) Springer Handbook of Crystal Growth, pp. 1583-1736. , Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M., Eds.
Springer: New York, NY, USA
Adachi, H., Takano, K., Niino, A., Matsumura, H., Kinoshita, T., Warizaya, M., Inoue, T., Sasaki, T., Solution stirring initiates nucleation and improves the quality of adenosine deaminase crystals (2005) Acta Crystallogr. D, 61, pp. 759-762
Yaoi, M., Adachi, H., Takano, K., Matsumura, H., Inoue, T., Mori, Y., Sasaki, T., The effects of solution stirring on protein crystal growth (2004) Jpn. J. Appl. Phys, 43, pp. L686-L688
Adachi, H., Niino, A., Kinoshita, T., Warizaya, M., Maruki, R., Takano, K., Matsumura, H., Mori, Y., Solution-stirring method improves crystal quality of human triosephosphate isomerase (2006) J. BioSci. Bioeng, 101, pp. 83-86
Nagata, A., Ohnishi, H., Yoshimura, M., Ogawa, A., Ujita, S., Adachi, H., Okada, M., Nakagawa, A., Crystallization and preliminary X-ray analysis of rat SHPS-1 (2006) Acta Crystallogr. Sect. F, 62, pp. 189-191
Chayen, N.E., Comparative studies of protein crystallization by vapour-diffusion and microbatch techniques (1998) Acta Crystallogr. D, 1, pp. 8-15
Benvenuti, M., Mangani, S., Crystallization of soluble proteins in vapor diffusion for X-ray crystallography (2007) Nat. Prot, 2, pp. 1633-1651
Korczynska, J., Hu, T.C., Smith, D.K., Jenkins, J., Lewis, R., Edwards, T., Brzozowski, A.M., Microscale vapour diffusion for protein crystallization (2007) Acta Crystallogr. D, 63, pp. 1009-1015
Whon, T.W., Lee, Y.H., An, D.S., Song, H.K., Kim, S.G., A simple technique to convert sitting-drop vapor diffusion into hanging-drop vapor diffusion by solidifying the reservoir solution with agarose (2009) J. Appl. Crystallogr, 42, pp. 975-976
Lu, Q.Q., Yin, D.C., Xie, S.X., Liu, Y.M., Chen, R.Q., The effect of diluting crystallization droplets on protein crystallization in vapor diffusion method (2011) Cryst. Res. Technol, 46, pp. 917-925
Chayen, N.E., A novel technique to control the rate of vapor diffusion, giving larger protein crystals (1997) J. Appl. Crystallogr, 30, pp. 198-201
Chayen, N.E., Crystallization with oils: A new dimension in macromolecular crystal growth (1999) J. Cryst. Growth, 196, pp. 434-441
Chayen, N.E., Shaw, S.P.D., Maeder, D.L., Blow, D.M., An automated system for micro-batch protein crystallization and screening (1990) J. Appl. Crystallogr, 23, pp. 297-302
Brumshtein, B., Greenblatt, H.M., Futerman, A.H., Silman, I., Sussman, J.L., Control of the rate of evaporation in protein crystallization by the "microbatch under oil" method (2008) J. Appl. Crystallogr, 41, pp. 969-971
D'Arcy, A., Elmore, C., Stihle, M., Johnston, J.E., A novel approach to crystallising proteins under oil (1996) J. Cryst. Growth, 168, pp. 175-180
D'Arcy, A., Mac, S.A., Stihle, M., Haber, A., The advantages of using a modified microbatch method for rapid screening of protein crystallization conditions (2003) Acta Crystallogr. D, 59, pp. 396-399
Merlino, A., Russo, K.I., Albino, A., Pica, A., Vergara, A., Masullo, M., de Vendittis, E., Sica, F., Improving protein crystal quality by the without-oil microbatch method: Crystallization and preliminary X-ray diffraction analysis of glutathione synthetase from Pseudoalteromonas haloplanktis (2011) Int. J. Mol. Sci, 12, pp. 6312-6319
Reid, B.R., Koch, G.L., Boulanger, Y., Hartley, B.S., Blow, D.M., Letter: Crystallization and preliminary X-ray diffraction studies on tyrosyl-transfer RNA synthetase from Bacillus stearothermophilus (1973) J. Mol. Biol, 80, pp. 199-201
Thomas, D.H., Rob, A., Rice, D.W., A novel dialysis procedure for the crystallization of proteins (1989) Protein Eng, 2, pp. 489-491
Salemme, F.R., A free interface diffusion technique for the crystallization of proteins for X-ray crystallography (1972) Arch. BioChem. Biophys, 151, pp. 533-539
Berisio, R., Lamzin, V.S., Sica, F., Wilson, K.S., Zagari, A., Mazzarella, L., Protein titration in the crystal state (1999) J. Mol. Biol, 292, pp. 845-854
Vitagliano, L., Merlino, A., Zagari, A., Mazzarella, L., Productive and nonproductive binding to ribonuclease A: X-ray structure of two complexes with uridylyl(2',5')guanosine (2000) Protein Sci, 9, pp. 1217-1225
Garcia-Ruiz, J.M., Counter-diffusion methods for macromolecular crystallization (2003) Methods Enzymol, 368, pp. 130-154
Li, L., Du, W., Ismagilov, R.F., Multiparameter screening on SlipChip used for nanoliter protein crystallization combining free interface diffusion and microbatch methods (2010) J. Am. Chem. Soc, 132, pp. 112-119
McPherson, A., (1992) Effects of a Microgravity Environment On the Crystallization of Biological Macromolecules, 2, pp. 619-626. , Presented at VIII European Symposium on Materials and Fluid Sciences in Microgravity, Free University of Brussels, Brussels, Belgium, 12-16 April, Legros, J.C., ed
Bernard, Y., Degoy, S., Lefaucheux, F., Robert, M.C., A gel-mediated feeding technique for protein crystal growth from hanging drops (1994) Acta Crystallogr. D, 50, pp. 504-507
Robert, M.C., Lefaucheux, F., Crystal growth in gels: Principle and applications (1988) J. Cryst. Growth, 90, pp. 358-367
Lorber, B., Giege, R., Nucleation and growth of thaumatin crystals within a gel under microgravity on STS-95 mission vs. under Earth's gravity (2001) J. Cryst. Growth, 231, pp. 252-261
Zhu, D.W., Lorber, B., Sauter, C., Ng, J.D., Benas, P., Le Grimellec, C., Giege, R., Growth kinetics, diffraction properties and effect of agarose on the stability of a novel crystal form of Thermus thermophilus aspartyl-tRNA synthetase-1 (2001) Acta Crystallogr. D, 57, pp. 552-558
Moreno, A., Yokaichiya, F., Dimasi, E., Stojanoff, V., Growth and characterization of high-quality protein crystals for X-ray crystallography (2009) Ann. N. Y. Acad. Sci, 1161, pp. 429-436
Chayen, N.E., Turning protein crystallisation from an art into a science (2004) Curr. Opin. Struct. Biol, 14, pp. 577-583
Biertumpfel, C., Basquin, J., Suck, D., Sauter, C., Crystallization of biological macromolecules using agarose gel (2002) Acta Crystallogr. D, 58, pp. 1657-1659
Sugiyama, S., Maruyama, M., Sazaki, G., Hirose, M., Adachi, H., Takano, K., Murakami, S., Matsumura, H., Growth of protein crystals in hydrogels prevents osmotic shock (2012) J. Am. Chem. Soc, 134, pp. 5786-5789
Hasenaka, H., Sugiyama, S., Hirose, M., Shimizu, N., Kitatani, T., Takahashi, Y., Adachi, H., Inoue, T., Femtosecond laser processing of protein crystals grown in agarose gel (2010) J. Cryst. Growth, 312, pp. 73-78
van Driessche, A.E.S., Otalora, F., Gavira, J.A., Sazaki, G., Is agarose an impurity or an impurity filter? In situ observation of the joint gel/impurity effect on protein crystal growth kinetics (2008) Cryst. Growth Design, 8, pp. 3623-3629
Garcia, R.J.M., The uses of crystal growth in gels and other diffusing-reacting systems (1991) Key Eng. Mater, 58, pp. 87-106
Garcia, R.J.M., Moreno, A., Viedma, C., Coll, M., Crystal quality of lysozyme single crystals grown by the gel acupuncture method (1993) Mater. Res. Bull, 28, pp. 541-546
Oberthuer, D., Melero-Garcia, E., Dierks, K., Meyer, A., Betzel, C., Garcia-Caballero, A., Gavira, J.A., Monitoring and scoring counter-diffusion protein crystallization experiments in capillaries by In situ dynamic light scattering (2012) PLoS One, 7, pp. e33545
Ng, J.D., Gavira, J.A., Garcia-Ruiz, J.M., Protein crystallization by capillary counter-diffusion for applied crystallographic structure determination (2003) J. Struct. Biol, 142, pp. 218-231
Garcia, R.J.M., Gonzales-Ramirez, J.A., Gavira, J.A., Otalora, F., Granada Crystallisation Box: A new device for protein crystallisation by counter-diffusion techniques (2002) Acta Crystallogr. D, D58, pp. 1638-1642
Vergara, A., Castagnolo, D., Carotenuto, L., Vitagliano, L., Berisio, R., Sorrentino, G., Gonzalez-Ramirez, L., Zagari, A., Phase behavior and crystallogenesis under counter-diffusion conditions of the collagen-model peptide (Pro-Pro-Gly)(10) (2009) J. Cryst. Growth, 311, pp. 304-309
Malecki, P.H., Rypniewski, W., Szymanski, M., Barciszewski, J., Meyer, A., Binding of the plant hormone kinetin in the active site of Mistletoe Lectin I from Viscum album (2012) Biochim. Biophys. Acta, 1824, pp. 334-338
Meyer, A., Rypniewski, W., Szymanski, M., Voelter, W., Barciszewski, J., Betzel, C., Structure of mistletoe lectin I from Viscum album in complex with the phytohormone zeatin (2008) Biochim. Biophys. Acta, 1784, pp. 1590-1595
Shieh, H.S., Stallings, W.C., Stevens, A.M., Stegeman, R.A., Using sampling techniques in protein crystallization (1995) Acta Crystallogr. D, 51, pp. 305-310
Kingston, R.L., Baker, H.M., Baker, E.N., Search designs for protein crystallization based on orthogonal arrays (1994) Acta Crystallogr. D, 50, pp. 429-440
Jancarik, J., Kim, S.-H., Sparse matrix sampling: A screening method for crystallization of proteins (1991) J. Appl. Crystallogr, 24, pp. 409-411
Carter Jr., C.W., Carter, C.W., Protein crystallization using incomplete factorial experiments (1979) J. Biol. Chem, 254, pp. 12219-12223
Cudney, R., Patel, S., Weisgraber, K., Newhouse, Y., McPherson, A., Screening and optimization strategies for macromolecular crystal growth (1994) Acta Crystallogr. D, 50, pp. 414-423
Stura, E.A., Wilson, I.A., Applications of the streak seeding technique in protein crystallization (1991) J. Cryst. Growth, 110, pp. 270-282
Stewart, P.D.S., Kolek, S.A., Briggs, R.A., Chayen, N.E., Baldock, P.F.M., Random microseeding: A theoretical and practical exploration of seed stability and seeding techniques for successful protein crystallization (2011) Cryst. Growth Design, 11, pp. 3432-3441
Khurshid, S., Haire, L.F., Chayen, N.E., Automated seeding for the optimization of crystal quality (2010) J. Appl. Crystallogr, 43, pp. 752-756
Georgiev, A., Vorobiev, S., Edstrom, W., Song, T., Laine, A., Hunt, J., Allen, P., Automated streak-seeding with micromachined silicon tools (2006) Acta Crystallogr. D, D62, pp. 1039-1045
McPherson, A., Shlichta, P., Heterogeneous and epitaxial nucleation of protein crystals on mineral surfaces (1988) Science, 239, pp. 385-387
Falini, G., Fermani, S., Conforti, G., Ripamonti, A., Protein crystallisation on chemically modified mica surfaces (2002) Acta Crystallogr. D, 58, pp. 1649-1652
Tang, L., Huang, Y.B., Liu, D.Q., Li, J.L., Mao, K., Liu, L., Cheng, Z.J., He, J.H., Effects of the silanized mica surface on protein crystallization (2005) Acta Crystallogr. D, 61, pp. 53-59
Tosi, G., Fermani, S., Falini, G., Gavira Gallardo, J.A., Garcia, R.J.M., Crystallization of proteins on functionalized surfaces (2008) Acta Crystallogr. D, 64, pp. 1054-1061
Rong, L., Komatsu, H., Natsuisaka, M., Yoda, S., Epitaxial nucleation of protein crystal on poly-L-lysine modified surface (2001) Jpn. J. Appl. Phys, 40, pp. 6677-6678
Sanjoh, A., Tsukihara, T., Spatiotemporal protein crystal growth studies using microfluidic silicon devices (1999) J. Cryst. Growth, 196, pp. 691-702
Di Profio, G., Curcio, E., Drioli, E., Trypsin crystallization by membrane-based techniques (2005) J. Struct. Biol, 150, pp. 41-49
Curcio, E., Fontananova, E., di Profio, G., Drioli, E., Influence of the structural properties of poly(vinylidene fluoride) membranes on the heterogeneous nucleation rate of protein crystals (2006) J. Phys. Chem. B, 110, pp. 12438-12445
Chayen, N.E., Saridakis, E., El-Bahar, R., Nemirovsky, Y., Porous silicon: An effective nucleation-inducing material for protein crystallization (2001) J. Mol. Biol, 312, pp. 591-595
Stolyarova, S., Saridakis, E., Chayen, N.E., Nemirovsky, Y., A model for enhanced nucleation of protein crystals on a fractal porous substrate (2006) Biophys. J, 91, pp. 3857-3863
Asanithi, P., Saridakis, E., Govada, L., Jurewicz, I., Brunner, E.W., Ponnusamy, R., Cleaver, J.A., Sear, R.P., Carbon-nanotube-based materials for protein crystallization (2009) ACS Appl. Mater. Interfaces, 1, pp. 1203-1210
Sugahara, M., Asada, Y., Morikawa, Y., Kageyama, Y., Kunishima, N., Nucleant-mediated protein crystallization with the application of microporous synthetic zeolites (2008) Acta Crystallogr. D, 64, pp. 686-695
Georgieva, D.G., Kuil, M.E., Oosterkamp, T.H., Zandbergen, H.W., Abrahams, J.P., Heterogeneous nucleation of three-dimensional protein nanocrystals (2007) Acta Crystallogr. D, 63, pp. 564-570
Takehara, M., Ino, K., Takakusagi, Y., Oshikane, H., Nureki, O., Ebina, T., Mizukami, F., Sakaguchi, K., Use of layer silicate for protein crystallization: Effects of micromica and chlorite powders in hanging drops (2008) Anal. BioChem, 373, pp. 322-329
Saridakis, E., Khurshid, S., Govada, L., Phan, Q., Hawkins, D., Crichlow, G.V., Lolis, E., Chayen, N.E., Protein crystallization facilitated by molecularly imprinted polymers (2011) Proc. Natl. Acad. Sci. USA, 108, pp. 11081-11086
Thakur, A.S., Robin, G., Guncar, G., Saunders, N.F., Newman, J., Martin, J.L., Kobe, B., Improved success of sparse matrix protein crystallization screening with heterogeneous nucleating agents (2007) PLoS One, 2, pp. e1091
Nederlof, I., Hosseini, R., Georgieva, D., Luo, J., Li, D., Abrahams, J.P., A straightforward and robust method for introducing human hair as a nucleant into high throughput crystallization trials (2011) Cryst. Growth Des, 11, pp. 1170-1176
Munshi, P., Chung, S.L., Blakeley, M.P., Weiss, K.L., Myles, D.A., Meilleur, F., Rapid visualization of hydrogen positions in protein neutron crystallographic structures (2012) Acta Crystallogr. D, 68, pp. 35-41
Budayova-Spano, M., Dauvergne, F., Audiffren, M., Bactivelane, T., Cusack, S., A methodology and an instrument for the temperature-controlled optimization of crystal growth (2007) Acta Crystallogr. D, 63, pp. 339-347
Matsumura, H., Kakiniuchi, K., Nakamura, T., Sugiyama, S., Maruyama, M., Adachi, H., Takano, K., Mori, Y., Growth of protein crystals by syringe-type top-seeded solution growth (2011) Cryst. Growth Des, 11, pp. 1486-1492
Matsumura, H., Sugiyama, S., Hirose, M., Kakinouchi, K., Maruyama, M., Murai, R., Adachi, H., Mori, Y., Approach for growth of high-quality and large protein crystals (2011) J. Synchrotron. Rad, 18, pp. 16-19
Sugiyama, S., Hasenaka, H., Hirose, M., Shimizu, N., Kitatani, T., Takahashi, Y., Adachi, H., Inoue, T., Femtosecond laser processing of agarose gel surrounding protein crystals for development of an automated crystal capturing system (2009) Jpn. J. Appl. Phys, 48, pp. 105502-105506
Murai, R., Yoshikawa, H.Y., Takahashi, Y., Maruyama, M., Sugiyama, S., Sazaki, G., Adachi, H., Murakami, S., Enhancement of femtosecond laser-induced nucleation of protein in a gel solution (2010) Appl. Phys. Lett, 96, pp. 043702-043704
Sherlin, L.D., Bullock, T.L., Nissan, T.A., Perona, J.J., Lariviere, F.J., Uhlenbeck, O.C., Scaringe, S.A., Chemical and enzymatic synthesis of tRNAs for high-throughput crystallization (2001) RNA, 7, pp. 1671-1678
Choi, J., Majima, T., Conformational changes of non-B DNA (2011) Chem. Soc. Rev, 40, pp. 5893-5909
Mooers, B.H., Crystallographic studies of DNA and RNA (2009) Methods, 47, pp. 168-176
Batey, R.T., Rambo, R.P., Lucast, L., Rha, B., Doudna, J.A., Crystal structure of the ribonucleoprotein core of the signal recognition particle (2000) Science, 287, pp. 1232-1239
Ferre-D'Amare, A.R., Zhou, K., Doudna, J.A., A general module for RNA crystallization (1998) J. Mol. Biol, 279, pp. 621-631
Rupert, P.B., Ferre-D'Amare, A.R., Crystallization of the hairpin ribozyme: Illustrative protocols (2004) Methods Mol. Biol, 252, pp. 303-311
Patel, D.J., Phan, A.T., Kuryavyi, V., Human telomere, oncogenic promoter and 5'-UTR G-quadruplexes: Diverse higher order DNA and RNA targets for cancer therapeutics (2007) Nucleic Acids Res, 35, pp. 7429-7455
Lech, C.J., Heddi, B., Phan, A.T., Guanine base stacking in G-quadruplex nucleic acids (2013) Nucleic Acids Res, 41, pp. 2034-2046
Xu, Y., Komiyama, M., Structure, function and targeting of human telomere RNA (2012) Methods, 57, pp. 100-105
Neidle, S., Human telomeric G-quadruplex: The current status of telomeric G-quadruplexes as therapeutic targets in human cancer (2010) FEBS J, 277, pp. 1118-1125
Haider, S.M., Neidle, S., Parkinson, G.N., A structural analysis of G-quadruplex/ligand interactions (2011) Biochimie, 93, pp. 1239-1251
Lane, A.N., Chaires, J.B., Gray, R.D., Trent, J.O., Stability and kinetics of G-quadruplex structures (2008) Nucleic Acids Res, 36, pp. 5482-5515
Bugaut, A., Balasubramanian, S., A sequence-independent study of the influence of short loop lengths on the stability and topology of intramolecular DNA G-quadruplexes (2008) BioChemistry, 47, pp. 689-697
Hud, N.V., Smith, F.W., Anet, F.A., Feigon, J., The selectivity for K+ versus Na+ in DNA quadruplexes is dominated by relative free energies of hydration: A thermodynamic analysis by 1H NMR (1996) BioChemistry, 35, pp. 15383-15390
Campbell, N.H., Parkinson, G.N., Crystallographic studies of quadruplex nucleic acids (2007) Methods, 43, pp. 252-263
Perederina, A., Krasilnikov, A.S., Crystallization of RNA-protein complexes: From synthesis and purification of individual components to crystals (2012) Methods Mol. Biol, 905, pp. 123-143
Tan, S., Hunziker, Y., Pellegrini, L., Richmond, T.J., Crystallization of the yeast MATalpha2/MCM1/DNA ternary complex: General methods and principles for protein/DNA cocrystallization (2000) J. Mol. Biol, 297, pp. 947-959
Jordan, S.R., Whitcombe, T.V., Berg, J.M., Pabo, C.O., Systematic variation in DNA length yields highly ordered repressor-operator cocrystals (1985) Science, 230, pp. 1383-1385
Ke, A., Doudna, J.A., Crystallization of RNA and RNA-protein complexes (2004) Methods, 34, pp. 408-414
Brown, D.G., Freemont, P.S., Crystallography in the study of protein-DNA interactions (1996) Methods Mol. Biol, 56, pp. 293-318
Hollis, T., Crystallization of Protein-DNA Complexes (2007) Macromolecular Crystallography Protocols: Preparation and Crystallization of Macromolecules, 363. , Springer: New York, NY, USA
Conlin, R.M., Brown, R.S., Reconstitution of Protein-DNA Complexes for Crystallization (1994) DNA-Protein Interactions: Principles and Protocols, 30. , Springer: New York, NY, USA
Nadassy, K., Wodak, S.J., Janin, J., Structural features of protein-nucleic acid recognition sites (1999) BioChemistry, 38, pp. 1999-2017
Yang, X.L., Otero, F.J., Ewalt, K.L., Liu, J., Swairjo, M.A., Kohrer, C., Rajbhandary, U.L., Schimmel, P., Two conformations of a crystalline human tRNA synthetase-tRNA complex: Implications for protein synthesis (2006) EMBO J, 25, pp. 2919-2929
Rice, P.A., Yang, S., Mizuuchi, K., Nash, H.A., Crystal structure of an IHF-DNA complex: A protein-induced DNA U-turn (1996) Cell, 87, pp. 1295-1306
Wedekind, J.E., McKay, D.B., Crystal structure of a lead-dependent ribozyme revealing metal binding sites relevant to catalysis (1999) Nat. Struct. Biol, 6, pp. 261-268
Russo, K.I., Merlino, A., Randazzo, A., Mazzarella, L., Sica, F., Crystallization and preliminary X-ray analysis of the complex of human alpha-thrombin with a modified thrombin-binding aptamer (2010) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 66, pp. 961-963
Garavito, R.M., Rosenbusch, J.P., Three-dimensional crystals of an integral membrane protein: An initial x-ray analysis (1980) J. Cell Biol, 86, pp. 327-329
Bill, R.M., Henderson, P.J., Iwata, S., Kunji, E.R., Michel, H., Neutze, R., Newstead, S., Vogel, H., Overcoming barriers to membrane protein structure determination (2011) Nat. Biotechnol, 29, pp. 335-340
Prive, G.G., Detergents for the stabilization and crystallization of membrane proteins (2007) Methods, 41, pp. 388-397
Newstead, S., Ferrandon, S., Iwata, S., Rationalizing alpha-helical membrane protein crystallization (2008) Protein Sci, 17, pp. 466-472
Hunte, C., Michel, H., Crystallisation of membrane proteins mediated by antibody fragments (2002) Curr. Opin. Struct. Biol, 12, pp. 503-508
Landau, E.M., Rosenbusch, J.P., Lipidic cubic phases: A novel concept for the crystallization of membrane proteins (1996) Proc. Natl. Acad. Sci. USA, 93, pp. 14532-14535
Wadsten, P., Wohri, A.B., Snijder, A., Katona, G., Gardiner, A.T., Cogdell, R.J., Neutze, R., Engstrom, S., Lipidic sponge phase crystallization of membrane proteins (2006) J. Mol. Biol, 364, pp. 44-53
Faham, S., Bowie, J.U., Bicelle crystallization: A new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure (2002) J. Mol. Biol, 316, pp. 1-6
Wiener, M.C., A pedestrian guide to membrane protein crystallization (2004) Methods, 34, pp. 364-372
Ujwal, R., Bowie, J.U., Crystallizing membrane proteins using lipidic bicelles (2011) Methods, 55, pp. 337-341
Luecke, H., Schobert, B., Richter, H.T., Cartailler, J.P., Lanyi, J.K., Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution (1999) Science, 286, pp. 255-261
Katona, G., Snijder, A., Gourdon, P., Andreasson, U., Hansson, O., Andreasson, L.E., Neutze, R., Conformational regulation of charge recombination reactions in a photosynthetic bacterial reaction center (2005) Nat. Struct. Mol. Biol, 12, pp. 630-631
Caffrey, M., Cherezov, V., Crystallizing membrane proteins using lipidic mesophases (2009) Nat. Protocols, 4, pp. 706-731
Caffrey, M., Crystallizing membrane proteins for structure-function studies using lipidic mesophases (2011) BioChem. Soc. Trans, 39, pp. 725-732
Cherezov, V., Lipidic cubic phase technologies for membrane protein structural studies (2011) Curr. Opin. Struct. Biol, 21, pp. 559-566
Li, D., Caffrey, M., Lipid cubic phase as a membrane mimetic for integral membrane protein enzymes (2011) Proc. Natl. Acad. Sci. USA, 108, pp. 8639-8644
Aherne, M., Lyons, J.A., Caffrey, M., A fast, simple and robust protocol for growing crystals in the lipidic cubic phase (2012) J. Appl. Crystallogr, 45, pp. 1330-1333
Pebay-Peyroula, E., Rummel, G., Rosenbusch, J.P., Landau, E.M., X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases (1997) Science, 277, pp. 1676-1681
Royant, A., Nollert, P., Edman, K., Neutze, R., Landau, E.M., Pebay-Peyroula, E., Navarro, J., X-ray structure of sensory rhodopsin II at 2.1-A resolution (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 10131-10136
Gordeliy, V.I., Labahn, J., Moukhametzianov, R., Efremov, R., Granzin, J., Schlesinger, R., Buldt, G., Klare, J.P., Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex (2002) Nature, 419, pp. 484-487
Vogeley, L., Sineshchekov, O.A., Trivedi, V.D., Sasaki, J., Spudich, J.L., Luecke, H., Anabaena sensory rhodopsin: A photochromic color sensor at 2.0 A (2004) Science, 306, pp. 1390-1393
Kato, H.E., Zhang, F., Yizhar, O., Ramakrishnan, C., Nishizawa, T., Hirata, K., Ito, J., Hayashi, S., Crystal structure of the channelrhodopsin light-gated cation channel (2012) Nature, 482, pp. 369-374
Katona, G., Andreasson, U., Landau, E.M., Andreasson, L.E., Neutze, R., Lipidic cubic phase crystal structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.35A resolution (2003) J. Mol. Biol, 331, pp. 681-692
Cherezov, V., Rosenbaum, D.M., Hanson, M.A., Rasmussen, S.G., Thian, F.S., Kobilka, T.S., Choi, H.J., Kobilka, B.K., High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor (2007) Science, 318, pp. 1258-1265
Jaakola, V.P., Griffith, M.T., Hanson, M.A., Cherezov, V., Chien, E.Y., Lane, J.R., Ijzerman, A.P., Stevens, R.C., The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist (2008) Science, 322, pp. 1211-1217
Shimamura, T., Shiroishi, M., Weyand, S., Tsujimoto, H., Winter, G., Katritch, V., Abagyan, R., Han, G.W., Structure of the human histamine H1 receptor complex with doxepin (2011) Nature, 475, pp. 65-70
Haga, K., Kruse, A.C., Asada, H., Yurugi-Kobayashi, T., Shiroishi, M., Zhang, C., Weis, W.I., Haga, T., Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist (2012) Nature, 482, pp. 547-551
Liu, W., Cherezov, V., Crystallization of membrane proteins in lipidic mesophases (2011) J. Visual. Exp. JoVE, 49, pp. 1259-1270
Li, D., Boland, C., Walsh, K., Caffrey, M., Use of a robot for high-throughput crystallization of membrane proteins in lipidic mesophases (2012) J. Visual. Exp. JoVE, 67, pp. e4000
Xu, F., Liu, W., Hanson, M.A., Stevens, R.C., Cherezov, V., Development of an automated high throughput LCP-FRAP assay to guide membrane protein crystallization in lipid mesophases (2011) Cryst. Growth Des, 11, pp. 1193-1201
Kubicek, J., Schlesinger, R., Baeken, C., Buldt, G., Schafer, F., Labahn, J., Controlled in meso phase crystallization-a method for the structural investigation of membrane proteins (2012) PLoS One, 7, pp. e35458
Nollert, P., Navarro, J., Landau, E.M., Crystallization of membrane proteins in cubo (2002) Methods Enzymol, 343, pp. 183-199
Johansson, L.C., Wohri, A.B., Katona, G., Engstrom, S., Neutze, R., Membrane protein crystallization from lipidic phases (2009) Curr. Opin. Struct. Biol, 19, pp. 372-378
Fellouse, F.A., Esaki, K., Birtalan, S., Raptis, D., Cancasci, V.J., Koide, A., Jhurani, P., Kossiakoff, A.A., High-throughput generation of synthetic antibodies from highly functional minimalist phage-displayed libraries (2007) J. Mol. Biol, 373, pp. 924-940
Lim, H.H., Fang, Y., Williams, C., High-efficiency screening of monoclonal antibodies for membrane protein crystallography (2011) PLoS One, 6, pp. e24653
Sennhauser, G., Grutter, M.G., Chaperone-assisted crystallography with DARPins (2008) Structure, 16, pp. 1443-1453
Ostermeier, C., Michel, H., Crystallization of membrane proteins (1997) Curr. Opin. Struct. Biol, 7, pp. 697-701
Liu, Z., Yan, H., Wang, K., Kuang, T., Zhang, J., Gui, L., An, X., Chang, W., Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution (2004) Nature, 428, pp. 287-292
Newman, J., Bolton, E.E., Muller-Dieckmann, J., Fazio, V.J., Gallagher, D.T., Lovell, D., Luft, J.R., Sayle, R.A., On the need for an international effort to capture, share and use crystallization screening data (2012) Acta Crystallogr. Sect. F, 68, pp. 253-258
Sazaki, G., van Driessche, A.E., Dai, G., Okada, M., Matsui, T., Otalora, F., Tsukamoto, K., Nakajima, K., In situ observation of elementary growth processes of protein crystals by advanced optical microscopy (2012) Protein Peptide Lett, 19, pp. 743-760
Wiencek, J.M., New strategies for protein crystal growth (1999) Ann. Rev. Biomed. Eng, 1, pp. 505-534
Qutub, Y., Reviakine, I., Maxwell, C., Navarro, J., Landau, E.M., Vekilov, P.G., Crystallization of transmembrane proteins in cubo: Mechanisms of crystal growth and defect formation (2004) J. Mol. Biol, 343, pp. 1243-1254
Glassford, S.E., Govada, L., Chayen, N.E., Byrne, B., Kazarian, S.G., Micro ATR FTIR imaging of hanging drop protein crystallisation (2012) Vib. Spectrosc, 63, pp. 492-498
Echalier, A., Glazer, R.L., Fulop, V., Geday, M.A., Assessing crystallization droplets using birefringence (2004) Acta Crystallogr. D, 60, pp. 696-702
Wilson, W.W., Light scattering as a diagnostic for protein crystal growth-A practical approach (2003) J. Struct. Biol, 142, pp. 56-65
Gliko, O., Pan, W., Katsonis, P., Neumaier, N., Galkin, O., Weinkauf, S., Vekilov, P.G., Metastable liquid clusters in super- and undersaturated protein solutions (2007) J. Phys. Chem. B, 111, pp. 3106-3114
Watts, D., Muller-Dieckmann, J., Tsakanova, G., Lamzin, V.S., Groves, M.R., Quantitive evaluation of macromolecular crystallization experiments using 1,8-ANS fluorescence (2010) Acta Crystallogr. D, 66, pp. 901-908
Fiedler, S., Müller-Dieckmann, J., Watts, D., Lamzin, V.S., Groves, M.R., In situ Protein Crystal Diffraction Screening' (2012) Crystallography, Research Technology and Applications, pp. 31-44. , Nova Science Publishers: Hamburg, Germany
Trache, A., Meininger, G.A., Total internal reflection fluorescence (TIRF) microscopy (2008) Curr. Protocols Microbiol, , doi:10.1002/9780471729259.mc02a02s10
Boudjemline, A., Saridakis, E., Swann, M.J., Govada, L., Mavridis, I.M., Chayen, N.E., Use of dual polarization interferometry as a diagnostic tool for protein crystallization (2011) Anal. Chem, 83, pp. 7881-7887
Merlino, A., Vitagliano, L., Balsamo, A., Nicoletti, F.P., Howes, B.D., Giordano, D., Coppola, D., Smulevich, G., Crystallization, preliminary X-ray diffraction studies and Raman microscopy of the major haemoglobin from the sub-Antarctic fish Eleginops maclovinus in the carbomonoxy form (2011) Acta Crystallogr. Sect. F, 66, pp. 1536-1540
Vergara, A., Merlino, A., Pizzo, E., D'Alessio, G., Mazzarella, L., A novel method for detection of selenomethionine incorporation in protein crystals via Raman microscopy (2008) Acta Crystallogr. D, 64, pp. 167-171
Merlino, A., Sica, F., Vergara, A., Monitoring Preparation of Derivative Protein Crystals via Raman Microscopy (2011) Current Trends In X-Ray Crystallography, pp. 393-408. , Chandrasekaran, D.A., Ed.
InTech: Rijeka, Croatia
Dewalt, E.L., Begue, V.J., Ronau, J.A., Sullivan, S.Z., Das, C., Simpson, G.J., Polarization-resolved second-harmonic generation microscopy as a method to visualize protein-crystal domains (2013) Acta Crystallogr. D, 69, pp. 74-81
Wampler, R.D., Kissick, D.J., Dehen, C.J., Gualtieri, E.J., Grey, J.L., Wang, H.F., Thompson, D.H., Simpson, G.J., Selective detection of protein crystals by second harmonic microscopy (2008) J. Am. Chem. Soc, 130, pp. 14076-14077
Stradner, A., Sedgwick, H., Cardinaux, F., Poon, W.C., Egelhaaf, S.U., Schurtenberger, P., Equilibrium cluster formation in concentrated protein solutions and colloids (2004) Nature, 432, pp. 492-495
Cardinaux, F., Zaccarelli, E., Stradner, A., Bucciarelli, S., Farago, B., Egelhaaf, S.U., Sciortino, F., Schurtenberger, P., Cluster-driven dynamical arrest in concentrated lysozyme solutions (2011) J. Phys. Chem. B, 115, pp. 7227-7237
Devaud, G., Furcinitti, P.S., Fleming, J.C., Lyon, M.K., Douglas, K., Direct observation of defect structure in protein crystals by atomic force and transmission electron microscopy (1992) Biophys. J, 63, pp. 630-638
Gomery, K., Humphrey, E.C., Herring, R., Imaging and diffraction of protein crystallization using TEM (2012) J. Electron. Microsc, , doi:10.1093/jmicro/dfs088
Desbois, S., Seabrook, S.A., Newman, J., Some practical guidelines for UV imaging in the protein crystallization laboratory (2013) Acta Crystallogr. Sect. F, 69, pp. 201-208
Hu, Z.W., Thomas, B.R., Chernov, A.A., Laboratory multiple-crystal X-ray topography and reciprocal-space mapping of protein crystals: Influence of impurities on crystal perfection (2001) Acta Crystallogr. D, 57, pp. 840-846
Capelle, B., Epelboin, Y., Hartwig, J., Moraleda, A.B., Otalora, F., Stojanoff, V., Characterization of dislocations in protein crystals by means of synchrotron double-crystal topography (2004) J. Appl. Cryst, 37, pp. 67-71
Gill, H.S., Evaluating the efficacy of tryptophan fluorescence and absorbance as a selection tool for identifying protein crystals (2010) Acta Crystallogr. Sect. F, 66, pp. 364-372
Madden, J.T., Dewalt, E.L., Simpson, G.J., Two-photon excited UV fluorescence for protein crystal detection (2011) Acta Crystallogr. D, 67, pp. 839-846
Carpentier, P., Royant, A., Ohana, J., Bourgeois, D., Advances in spectroscopic methods for biological crystals. 2. Raman spectroscopy (2007) J. Appl. Crystallogr, 40, pp. 1113-1122
Vergara, A., Vitagliano, L., Merlino, A., Sica, F., Marino, K., Verde, C., di Prisco, G., Mazzarella, L., An order-disorder transition plays a role in switching off the Root effect in fish hemoglobins (2010) J. Biol. Chem, 285, pp. 32568-32575
Katona, G., Carpentier, P., Niviere, V., Amara, P., Adam, V., Ohana, J., Tsanov, N., Bourgeois, D., Raman-assisted crystallography reveals end-on peroxide intermediates in a nonheme iron enzyme (2007) Science, 316, pp. 449-453
Derewenda, Z.S., Rational protein crystallization by mutational surface engineering (2004) Structure, 12, pp. 529-535
Kobayashi, M., Kubota, M., Matsuura, Y., Crystallization and improvement of crystal quality for x-ray diffraction of maltooligosyl trehalose synthase by reductive methylation of lysine residues (1999) Acta Crystallogr. D, 55, pp. 931-933
Walter, T.S., Meier, C., Assenberg, R., Au, K.F., Ren, J., Verma, A., Nettleship, J.E., Grimes, J.M., Lysine methylation as a routine rescue strategy for protein crystallization (2006) Structure, 14, pp. 1617-1622
Heras, B., Martin, J.L., Post-crystallization treatments for improving diffraction quality of protein crystals (2005) Acta Crystallogr. D, 61, pp. 1173-1180
Derewenda, Z.S., Vekilov, P.G., Entropy and surface engineering in protein crystallization (2006) Acta Crystallogr. D, 62, pp. 116-124
Harp, J.M., Hanson, B.L., Timm, D.E., Bunick, G.J., Macromolecular crystal annealing: Evaluation of techniques and variables (1999) Acta Crystallogr. D, 55, pp. 1329-1334
Kriminski, S., Caylor, C.L., Nonato, M.C., Finkelstein, K.D., Thorne, R.E., Flash-cooling and annealing of protein crystals (2002) Acta Crystallogr. D, 58, pp. 459-471
Russo, K.I., Sica, F., Mattia, C.A., Merlino, A., Increasing the X-ray diffraction power of protein crystals by dehydration: The case of bovine serum albumin and a survey of literature data (2012) Int. J. Mol. Sci, 13, pp. 3782-3800
Newman, J., A review of techniques for maximizing diffraction from a protein crystal in stilla (2006) Acta Crystallogr. D, 62, pp. 27-31
Wine, Y., Cohen-Hadar, N., Freeman, A., Frolow, F., Elucidation of the mechanism and end products of glutaraldehyde crosslinking reaction by X-ray structure analysis (2007) Biotechnol. Bioeng, 98, pp. 711-718
Einstein, J.R., Humidity control device for the Buerger precession camera (1961) J. Sci. Instrum, 38, p. 449
Huxley, H.E., Kendrew, J.C., Discontinuous lattice changes in haemoglobin crystals (1953) Acta Cryst, 6, pp. 76-80
Pickford, M.G., Garman, E.F., Jones, E.Y., Stuart, D.I., A design of crystal mounting cell that allows the controlled variation of humidity at the protein crystal during X-ray diffraction (1993) J. Appl. Crystallogr, 26, pp. 465-466
Sjögren, T., Carlsson, G., Larsson, G., Hajdu, A., Andersson, C., Pettersson, H., Hajdu, J., Protein crystallography in a vapour stream: Data collection, reaction initiation and intermediate trapping in naked hydrated protein crystals (2002) J. Appl. Crystallogr, 35, pp. 113-116
Kiefersauer, R., Stetefeld, J., Gomis-Rüth, F.X., Romão, M.J., Lottspeich, F., Huber, R., Protein-crystal density by volume measurement and amino-acid analysis (1996) J. Appl. Crystallogr, 29, pp. 311-317
Kiefersauer, R., Than, M.E., Dobbek, H., Gremer, L., Melero, M., Strobl, S., Dias, J.M., Huber, R., A novel free-mounting system for protein crystals: Transformation and improvement of diffraction power by accurately controlled humidity changes (2000) J. Appl. Crystallogr, 33, pp. 1223-1230
Collins, M.D., Kim, C.U., Gruner, S.M., High-pressure protein crystallography and NMR to explore protein conformations (2011) Ann. Rev. Biophys, 40, pp. 81-98
Suzuki, Y., Sazaki, G., Miyashita, S., Sawada, T., Tamura, K., Komatsu, H., Protein crystallization under high pressure (2002) Biochim. Biophys. Acta, 1595, pp. 345-356
Suzuki, Y., Protein Crystal Growth under High Pressure (2012) Modern Aspects of Bulk Crystal and Thin Film Preparation, pp. 439-462. , InTech: Rijeka, Croatia
Li, L., Ismagilov, R.F., Protein crystallization using microfluidic technologies based on valves, droplets, and SlipChip (2010) Ann. Rev. Biophys, 39, pp. 139-518
Yamaguchi, H., Maeki, M., Yamashita, K., Nakamura, H., Miyazaki, M., Maeda, H., Controlling one protein crystal growth by droplet-based microfluidic system (2013) J. BioChem, 153, pp. 339-346
Guha, S., Perry, S.L., Pawate, A.S., Kenis, P.J.A., Fabrication of X-ray compatible microfluidic platforms for protein crystallization (2012) Sensor Actuat. B, 174, pp. 1-9
Hoffman, I. D., Protein crystallization for structure-based drug design (2012) Methods Mol. Biol, 841, pp. 67-91
Deschamps, J. R., The role of crystallography in drug design (2005) AAPS J, 7, pp. E813-E819
Cachau, R. E., Podjarny, A. D., High-resolution crystallography and drug design (2005) J. Mol. Recognit, 18, pp. 196-202
Blundell, T. L., Patel, S., High-throughput X-ray crystallography for drug discovery (2004) Curr. Opin. Pharmacol, 4, pp. 490-496
Bergfors, T. M., (1999) Protein Crystallization: Techniques, Strategies and Tips, , International University Line: La Jolla, CA, USA
Kelly, S. M., Price, N. C., The use of circular dichroism in the investigation of protein structure and function (2000) Curr. Protein Pept. Sci, 1, pp. 349-384
Berne, B. J., Pecora, R., (2000) Dynamic Light Scattering With Applications to Chemistry, Biology, and Physics, , John Wiley & Sons: New York, NY, USA
Chernov, A. A., Komatsu, H., Principles of Crystal Growth in Protein Crystallization (1995) Science and Technology of Crystal Growth, , van der Eerden, J. P., Bruinsma, O. S. L., Eds.
Dumetz, A. C., Chockla, A. M., Kaler, E. W., Lenhoff, A. M., Effects of pH on protein-protein interactions and implications for protein phase behavior (2008) Biochim. Biophys. Acta, 1784, pp. 600-610
Kantardjieff, K. A., Rupp, B., Protein isoelectric point as a predictor for increased crystallization screening efficiency (2004) Bioinformatics, 20, pp. 2162-2168
Malawski, G. A., Hillig, R. C., Monteclaro, F., Eberspaecher, U., Schmitz, A. A., Crusius, K., Huber, M., Muller-Tiemann, B., Identifying protein construct variants with increased crystallization propensity-a case study (2006) Protein Sci, 15, pp. 2718-2728
Ericsson, U. B., Hallberg, B. M., Detitta, G. T., Dekker, N., Nordlund, P., Thermofluor-based high-throughput stability optimization of proteins for structural studies (2006) Anal. BioChem, 357, pp. 289-298
Judge, R. A., Takahashi, S., Longenecker, K. L., Fry, E. H., Abad-Zapatero, C., Chiu, M. L., The effect of ionic liquids on protein crystallization and X-ray diffraction resolution (2009) Cryst. Growth Des, 9, pp. 3463-3469
Larson, S. B., Day, J. S., Cudney, R., McPherson, A., A novel strategy for the crystallization of proteins: X-ray diffraction validation (2007) Acta Crystallogr. D, 63, pp. 310-318
Sauter, C., Ng, J. D., Lorber, B., Keith, G., Brion, P., Hosseini, M. W., Lehn, J. -M., Giege, R., Additives for the crystallization of proteins and nucleic acids (1999) J. Cryst. Growth, 196, pp. 365-376
Shim, J. U., Cristobal, G., Link, D. R., Thorsen, T., Fraden, S., Using microfluidics to decouple nucleation and growth of protein crystals (2007) Cryst. Growth Des, 7, pp. 2192-2194
Tom ov, I., Branca, R. M., Bodo, G., Bagyinka, C., Smatanov, I. K., Cross-crystallization method used for the crystallization and preliminary diffraction analysis of a novel di-haem cytochrome c4 (2006) Acta Crystallogr. Sect. F, 62, pp. 820-824
Tom ov, I., Smatanov, I. K., Copper co-crystallization and divalent metal salts cross-influence effect: A new optimization tool improving crystal morphology and diffraction quality (2007) J. Cryst. Growth, 306, pp. 383-389
Kundrot, C. E., Judge, R. A., Pusey, M. L., Snell, E. H., Microgravity and macromolecular crystallography (2001) Cryst. Growth Des, 1, pp. 87-99
Wakayama, N. I., Yin, D. C., Harata, K., Kiyoshi, T., Fujiwara, M., Tanimoto, Y., Macromolecular crystallization in microgravity generated by a superconducting magnet (2006) Ann. N. Y. Acad. Sci, 1077, pp. 184-193
Yin, D. C., Wakayama, N. I., Harata, K., Fujiwara, M., Kiyoshi, T., Wada, H., Niimura, N., Tanimoto, Y., Formation of protein crystals (orthorhombic lysozyme) in quasi-microgravity environment obtained by superconducting magnet (2004) J. Cryst. Growth, 270, pp. 184-191
Gavira, J. A., Garcia-Ruiz, J. M., Effects of a magnetic field on lysozyme crystal nucleation and growth in a diffusive environment (2009) Cryst. Growth Design, 9, pp. 2610-2615
Nanev, C. N., Penkova, A., Nucleation of lysozyme crystals under external electric and ultrasonic fields (2001) J. Cryst. Growth, 232, pp. 285-293
Al-Haq, M. I., Lebrasseur, E., Choi, W. -K., Tsuchiya, H., Torii, T., Yamazaki, H., Shinohara, E., An apparatus for electric-field-induced protein crystallization (2007) J. Appl. Crystallogr, 40, pp. 199-201
Guti rrez-Quezada, A. E., Arregu n-Espinosa, R., Moreno, A., Natarajan, S., Kalkura, S. N., Celestian, A. J., Parise, J. B., Vedda, A., Special Topics in Crystal Growth (2010) Springer Handbook of Crystal Growth, pp. 1583-1736. , Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M., Eds.
Chayen, N. E., Comparative studies of protein crystallization by vapour-diffusion and microbatch techniques (1998) Acta Crystallogr. D, 1, pp. 8-15
Whon, T. W., Lee, Y. H., An, D. S., Song, H. K., Kim, S. G., A simple technique to convert sitting-drop vapor diffusion into hanging-drop vapor diffusion by solidifying the reservoir solution with agarose (2009) J. Appl. Crystallogr, 42, pp. 975-976
Lu, Q. Q., Yin, D. C., Xie, S. X., Liu, Y. M., Chen, R. Q., The effect of diluting crystallization droplets on protein crystallization in vapor diffusion method (2011) Cryst. Res. Technol, 46, pp. 917-925
Chayen, N. E., A novel technique to control the rate of vapor diffusion, giving larger protein crystals (1997) J. Appl. Crystallogr, 30, pp. 198-201
Chayen, N. E., Crystallization with oils: A new dimension in macromolecular crystal growth (1999) J. Cryst. Growth, 196, pp. 434-441
Chayen, N. E., Shaw, S. P. D., Maeder, D. L., Blow, D. M., An automated system for micro-batch protein crystallization and screening (1990) J. Appl. Crystallogr, 23, pp. 297-302
Reid, B. R., Koch, G. L., Boulanger, Y., Hartley, B. S., Blow, D. M., Letter: Crystallization and preliminary X-ray diffraction studies on tyrosyl-transfer RNA synthetase from Bacillus stearothermophilus (1973) J. Mol. Biol, 80, pp. 199-201
Thomas, D. H., Rob, A., Rice, D. W., A novel dialysis procedure for the crystallization of proteins (1989) Protein Eng, 2, pp. 489-491
Salemme, F. R., A free interface diffusion technique for the crystallization of proteins for X-ray crystallography (1972) Arch. BioChem. Biophys, 151, pp. 533-539
Robert, M. C., Lefaucheux, F., Crystal growth in gels: Principle and applications (1988) J. Cryst. Growth, 90, pp. 358-367
Zhu, D. W., Lorber, B., Sauter, C., Ng, J. D., Benas, P., Le Grimellec, C., Giege, R., Growth kinetics, diffraction properties and effect of agarose on the stability of a novel crystal form of Thermus thermophilus aspartyl-tRNA synthetase-1 (2001) Acta Crystallogr. D, 57, pp. 552-558
Chayen, N. E., Turning protein crystallisation from an art into a science (2004) Curr. Opin. Struct. Biol, 14, pp. 577-583
van Driessche, A. E. S., Otalora, F., Gavira, J. A., Sazaki, G., Is agarose an impurity or an impurity filter? In situ observation of the joint gel/impurity effect on protein crystal growth kinetics (2008) Cryst. Growth Design, 8, pp. 3623-3629
Garcia, R. J. M., The uses of crystal growth in gels and other diffusing-reacting systems (1991) Key Eng. Mater, 58, pp. 87-106
Garcia, R. J. M., Moreno, A., Viedma, C., Coll, M., Crystal quality of lysozyme single crystals grown by the gel acupuncture method (1993) Mater. Res. Bull, 28, pp. 541-546
Ng, J. D., Gavira, J. A., Garcia-Ruiz, J. M., Protein crystallization by capillary counter-diffusion for applied crystallographic structure determination (2003) J. Struct. Biol, 142, pp. 218-231
Garcia, R. J. M., Gonzales-Ramirez, J. A., Gavira, J. A., Otalora, F., Granada Crystallisation Box: A new device for protein crystallisation by counter-diffusion techniques (2002) Acta Crystallogr. D, D58, pp. 1638-1642
Malecki, P. H., Rypniewski, W., Szymanski, M., Barciszewski, J., Meyer, A., Binding of the plant hormone kinetin in the active site of Mistletoe Lectin I from Viscum album (2012) Biochim. Biophys. Acta, 1824, pp. 334-338
Shieh, H. S., Stallings, W. C., Stevens, A. M., Stegeman, R. A., Using sampling techniques in protein crystallization (1995) Acta Crystallogr. D, 51, pp. 305-310
Kingston, R. L., Baker, H. M., Baker, E. N., Search designs for protein crystallization based on orthogonal arrays (1994) Acta Crystallogr. D, 50, pp. 429-440
Carter Jr., C. W., Carter, C. W., Protein crystallization using incomplete factorial experiments (1979) J. Biol. Chem, 254, pp. 12219-12223
Stura, E. A., Wilson, I. A., Applications of the streak seeding technique in protein crystallization (1991) J. Cryst. Growth, 110, pp. 270-282
Stewart, P. D. S., Kolek, S. A., Briggs, R. A., Chayen, N. E., Baldock, P. F. M., Random microseeding: A theoretical and practical exploration of seed stability and seeding techniques for successful protein crystallization (2011) Cryst. Growth Design, 11, pp. 3432-3441
Chayen, N. E., Saridakis, E., El-Bahar, R., Nemirovsky, Y., Porous silicon: An effective nucleation-inducing material for protein crystallization (2001) J. Mol. Biol, 312, pp. 591-595
Georgieva, D. G., Kuil, M. E., Oosterkamp, T. H., Zandbergen, H. W., Abrahams, J. P., Heterogeneous nucleation of three-dimensional protein nanocrystals (2007) Acta Crystallogr. D, 63, pp. 564-570
Thakur, A. S., Robin, G., Guncar, G., Saunders, N. F., Newman, J., Martin, J. L., Kobe, B., Improved success of sparse matrix protein crystallization screening with heterogeneous nucleating agents (2007) PLoS One, 2, pp. e1091
Sherlin, L. D., Bullock, T. L., Nissan, T. A., Perona, J. J., Lariviere, F. J., Uhlenbeck, O. C., Scaringe, S. A., Chemical and enzymatic synthesis of tRNAs for high-throughput crystallization (2001) RNA, 7, pp. 1671-1678
Mooers, B. H., Crystallographic studies of DNA and RNA (2009) Methods, 47, pp. 168-176
Batey, R. T., Rambo, R. P., Lucast, L., Rha, B., Doudna, J. A., Crystal structure of the ribonucleoprotein core of the signal recognition particle (2000) Science, 287, pp. 1232-1239
Rupert, P. B., Ferre-D'Amare, A. R., Crystallization of the hairpin ribozyme: Illustrative protocols (2004) Methods Mol. Biol, 252, pp. 303-311
Patel, D. J., Phan, A. T., Kuryavyi, V., Human telomere, oncogenic promoter and 5'-UTR G-quadruplexes: Diverse higher order DNA and RNA targets for cancer therapeutics (2007) Nucleic Acids Res, 35, pp. 7429-7455
Lech, C. J., Heddi, B., Phan, A. T., Guanine base stacking in G-quadruplex nucleic acids (2013) Nucleic Acids Res, 41, pp. 2034-2046
Haider, S. M., Neidle, S., Parkinson, G. N., A structural analysis of G-quadruplex/ligand interactions (2011) Biochimie, 93, pp. 1239-1251
Lane, A. N., Chaires, J. B., Gray, R. D., Trent, J. O., Stability and kinetics of G-quadruplex structures (2008) Nucleic Acids Res, 36, pp. 5482-5515
Hud, N. V., Smith, F. W., Anet, F. A., Feigon, J., The selectivity for K+ versus Na+ in DNA quadruplexes is dominated by relative free energies of hydration: A thermodynamic analysis by 1H NMR (1996) BioChemistry, 35, pp. 15383-15390
Campbell, N. H., Parkinson, G. N., Crystallographic studies of quadruplex nucleic acids (2007) Methods, 43, pp. 252-263
Jordan, S. R., Whitcombe, T. V., Berg, J. M., Pabo, C. O., Systematic variation in DNA length yields highly ordered repressor-operator cocrystals (1985) Science, 230, pp. 1383-1385
Ke, A., Doudna, J. A., Crystallization of RNA and RNA-protein complexes (2004) Methods, 34, pp. 408-414
Brown, D. G., Freemont, P. S., Crystallography in the study of protein-DNA interactions (1996) Methods Mol. Biol, 56, pp. 293-318
Conlin, R. M., Brown, R. S., Reconstitution of Protein-DNA Complexes for Crystallization (1994) DNA-Protein Interactions: Principles and Protocols, 30. , Springer: New York, NY, USA
Yang, X. L., Otero, F. J., Ewalt, K. L., Liu, J., Swairjo, M. A., Kohrer, C., Rajbhandary, U. L., Schimmel, P., Two conformations of a crystalline human tRNA synthetase-tRNA complex: Implications for protein synthesis (2006) EMBO J, 25, pp. 2919-2929
Rice, P. A., Yang, S., Mizuuchi, K., Nash, H. A., Crystal structure of an IHF-DNA complex: A protein-induced DNA U-turn (1996) Cell, 87, pp. 1295-1306
Wedekind, J. E., McKay, D. B., Crystal structure of a lead-dependent ribozyme revealing metal binding sites relevant to catalysis (1999) Nat. Struct. Biol, 6, pp. 261-268
Russo, K. I., Merlino, A., Randazzo, A., Mazzarella, L., Sica, F., Crystallization and preliminary X-ray analysis of the complex of human alpha-thrombin with a modified thrombin-binding aptamer (2010) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, 66, pp. 961-963
Garavito, R. M., Rosenbusch, J. P., Three-dimensional crystals of an integral membrane protein: An initial x-ray analysis (1980) J. Cell Biol, 86, pp. 327-329
Bill, R. M., Henderson, P. J., Iwata, S., Kunji, E. R., Michel, H., Neutze, R., Newstead, S., Vogel, H., Overcoming barriers to membrane protein structure determination (2011) Nat. Biotechnol, 29, pp. 335-340
Prive, G. G., Detergents for the stabilization and crystallization of membrane proteins (2007) Methods, 41, pp. 388-397
Landau, E. M., Rosenbusch, J. P., Lipidic cubic phases: A novel concept for the crystallization of membrane proteins (1996) Proc. Natl. Acad. Sci. USA, 93, pp. 14532-14535
Wiener, M. C., A pedestrian guide to membrane protein crystallization (2004) Methods, 34, pp. 364-372
Gordeliy, V. I., Labahn, J., Moukhametzianov, R., Efremov, R., Granzin, J., Schlesinger, R., Buldt, G., Klare, J. P., Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex (2002) Nature, 419, pp. 484-487
Kato, H. E., Zhang, F., Yizhar, O., Ramakrishnan, C., Nishizawa, T., Hirata, K., Ito, J., Hayashi, S., Crystal structure of the channelrhodopsin light-gated cation channel (2012) Nature, 482, pp. 369-374
Jaakola, V. P., Griffith, M. T., Hanson, M. A., Cherezov, V., Chien, E. Y., Lane, J. R., Ijzerman, A. P., Stevens, R. C., The 2. 6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist (2008) Science, 322, pp. 1211-1217
Johansson, L. C., Wohri, A. B., Katona, G., Engstrom, S., Neutze, R., Membrane protein crystallization from lipidic phases (2009) Curr. Opin. Struct. Biol, 19, pp. 372-378
Fellouse, F. A., Esaki, K., Birtalan, S., Raptis, D., Cancasci, V. J., Koide, A., Jhurani, P., Kossiakoff, A. A., High-throughput generation of synthetic antibodies from highly functional minimalist phage-displayed libraries (2007) J. Mol. Biol, 373, pp. 924-940
Lim, H. H., Fang, Y., Williams, C., High-efficiency screening of monoclonal antibodies for membrane protein crystallography (2011) PLoS One, 6, pp. e24653
Wiencek, J. M., New strategies for protein crystal growth (1999) Ann. Rev. Biomed. Eng, 1, pp. 505-534
Glassford, S. E., Govada, L., Chayen, N. E., Byrne, B., Kazarian, S. G., Micro ATR FTIR imaging of hanging drop protein crystallisation (2012) Vib. Spectrosc, 63, pp. 492-498
Wilson, W. W., Light scattering as a diagnostic for protein crystal growth-A practical approach (2003) J. Struct. Biol, 142, pp. 56-65
Fiedler, S., M ller-Dieckmann, J., Watts, D., Lamzin, V. S., Groves, M. R., In situ Protein Crystal Diffraction Screening' (2012) Crystallography, Research Technology and Applications, pp. 31-44. , Nova Science Publishers: Hamburg, Germany
Dewalt, E. L., Begue, V. J., Ronau, J. A., Sullivan, S. Z., Das, C., Simpson, G. J., Polarization-resolved second-harmonic generation microsc
An overview of biological macromolecule crystallization
The elucidation of the three dimensional structure of biological macromolecules has provided an important contribution to our current understanding of many basic mechanisms involved in life processes. This enormous impact largely results from the ability of X-ray crystallography to provide accurate structural details at atomic resolution that are a prerequisite for a deeper insight on the way in which bio-macromolecules interact with each other to build up supramolecular nano-machines capable of performing specialized biological functions. With the advent of high-energy synchrotron sources and the development of sophisticated software to solve X-ray and neutron crystal structures of large molecules, the crystallization step has become even more the bottleneck of a successful structure determination. This review introduces the general aspects of protein crystallization, summarizes conventional and innovative crystallization methods and focuses on the new strategies utilized to improve the success rate of experiments and increase crystal diffraction quality.
An overview of biological macromolecule crystallization
Chattopadhyay A, Cogdell R, Crespo-hernandez CE, Datta A, De A, Haacke S, Hariharan M, Helliwell J, Hughes A, Improta R, Jones M, Joseph J, Karsili T, Kohler B, Krishnan R, Kuriakose A, L , M , Markovitsi D, Medhi H, Periyasamy G, Pradeepkumar PI, Roy Chowdhury P, Sarangi M, Schapiro I, Schertler GFX, Schlichting I, Segarra-marti J, Swaminathan R, V , V , Van Grondelle R, Venkatraman RK, Venkatramani R, Watts A * Light induced charge and energy transport in nucleic acids and proteins: general discussion(152 views) Faraday Discuss (ISSN: 1359-6640print, 1359-6640linking), 2018 Apr 1; 207: 153-180. Impact Factor:4.194 ViewExport to BibTeXExport to EndNote
Chandra A, Cogdell R, Crespo-hernandez CE, Datta A, Giussani A, Haacke S, Helliwell J, Improta R, Jayasree RS, Jones M, Karsili T, Kohler B, L , M , Mandal I, Markovitsi D, Medhi H, Mishra PP, Pradeepkumar PI, Roy Chowdhury P, Sarangi M, Schapiro I, Schlichting I, Segarra-marti J, Sharma A, V , V , Van Grondelle R, Watts A * Light induced damage and repair in nucleic acids and proteins: general discussion(136 views) Faraday Discuss (ISSN: 1359-6640print, 1359-6640linking), 2018 Apr 1; 207: 389-408. Impact Factor:4.194 ViewExport to BibTeXExport to EndNote
Bhat V, Cogdell R, Crespo-hernández CE, Datta A, De A, Haacke S, Helliwell J, Improta R, Joseph J, Karsili T, Kohler B, Krishnan R, Mahil LM, Lewis F, Mandal I, Markovitsi D, Mishra PP, Paul S, Periyasamy G, Pradeepkumar PI, Roy Chowdhury P, Sarangi M, Sasikumar D, Schapiro I, Schertler GFX, Schlichting I, Segarra-martí J, Swaminathan R, Vishnu V, Van Grondelle R, Varghese R, Venkatramani R * Photocrosslinking between nucleic acids and proteins: general discussion(145 views) Faraday Discussions, 2018; N/D: N/D-N/D. Impact Factor:3.427 ViewExport to BibTeXExport to EndNote