Keywords: Crystallization, Membrane, New Methodologies, Nucleic Acid, Protein, Antibody, Fv Antibody, Guanine Quadruplex, Immunoglobulin F(ab) Fragment, Membrane Protein, Unclassified Drug, Batch Process, Chemical Reaction Kinetics, Complex Formation, Crystallography, Density Gradient, Electric Field, Free Interface Diffusion, Gel Counter Diffusion, Gel Crystallization, Lipid Bilayer, Macromolecule, Magnetic Field, Microdialysis, Nucleic Acid Structure, Precipitation, Protein Nucleic Acid Interaction, Review, Temperature Sensitivity, Thermostability, Water Vapor, X Ray Diffraction, Immunoglobulin F (ab) Fragment,
Affiliations: *** IBB - CNR ***
Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, Napoli I-80126, Italy
Institute of Biostructures and Bioimages, C.N.R, Via Mezzocannone 16, Napoli I-80134, Italy
References: Not available.
An overview of biological macromolecule crystallization
The elucidation of the three dimensional structure of biological macromolecules has provided an important contribution to our current understanding of many basic mechanisms involved in life processes. This enormous impact largely results from the ability of X-ray crystallography to provide accurate structural details at atomic resolution that are a prerequisite for a deeper insight on the way in which bio-macromolecules interact with each other to build up supramolecular nano-machines capable of performing specialized biological functions. With the advent of high-energy synchrotron sources and the development of sophisticated software to solve X-ray and neutron crystal structures of large molecules, the crystallization step has become even more the bottleneck of a successful structure determination. This review introduces the general aspects of protein crystallization, summarizes conventional and innovative crystallization methods and focuses on the new strategies utilized to improve the success rate of experiments and increase crystal diffraction quality.
An overview of biological macromolecule crystallization
Chattopadhyay A, Cogdell R, Crespo-hernandez CE, Datta A, De A, Haacke S, Hariharan M, Helliwell J, Hughes A, Improta R, Jones M, Joseph J, Karsili T, Kohler B, Krishnan R, Kuriakose A, L , M , Markovitsi D, Medhi H, Periyasamy G, Pradeepkumar PI, Roy Chowdhury P, Sarangi M, Schapiro I, Schertler GFX, Schlichting I, Segarra-marti J, Swaminathan R, V , V , Van Grondelle R, Venkatraman RK, Venkatramani R, Watts A * Light induced charge and energy transport in nucleic acids and proteins: general discussion(333 views) Faraday Discuss (ISSN: 1359-6640print, 1359-6640linking), 2018 Apr 1; 207: 153-180. Impact Factor:4.194 ViewExport to BibTeXExport to EndNote
Chandra A, Cogdell R, Crespo-hernandez CE, Datta A, Giussani A, Haacke S, Helliwell J, Improta R, Jayasree RS, Jones M, Karsili T, Kohler B, L , M , Mandal I, Markovitsi D, Medhi H, Mishra PP, Pradeepkumar PI, Roy Chowdhury P, Sarangi M, Schapiro I, Schlichting I, Segarra-marti J, Sharma A, V , V , Van Grondelle R, Watts A * Light induced damage and repair in nucleic acids and proteins: general discussion(272 views) Faraday Discuss (ISSN: 1359-6640print, 1359-6640linking), 2018 Apr 1; 207: 389-408. Impact Factor:4.194 ViewExport to BibTeXExport to EndNote
Bhat V, Cogdell R, Crespo-hernández CE, Datta A, De A, Haacke S, Helliwell J, Improta R, Joseph J, Karsili T, Kohler B, Krishnan R, Mahil LM, Lewis F, Mandal I, Markovitsi D, Mishra PP, Paul S, Periyasamy G, Pradeepkumar PI, Roy Chowdhury P, Sarangi M, Sasikumar D, Schapiro I, Schertler GFX, Schlichting I, Segarra-martí J, Swaminathan R, Vishnu V, Van Grondelle R, Varghese R, Venkatramani R * Photocrosslinking between nucleic acids and proteins: general discussion(251 views) Faraday Discussions, 2018; N/D: N/D-N/D. Impact Factor:3.427 ViewExport to BibTeXExport to EndNote