Molecular basis of the NO trans influence in quaternary T-state human hemoglobin: A computational study(415 views) Alcides Petruk A, Vergara A, Estrin D, Merlino A
Keywords: Molecular Dynamics, Nitric Oxide, Nitrosylhemoglobin, Hemoglobin Alpha Chain, Hemoglobin Beta Chain, Article, Controlled Study, Density Functional Theory, Hydration, Ligand Binding, Nitrosylation, Priority Journal, Protein Conformation, Protein Tertiary Structure, Humans, Molecular Dynamics Simulation, Protein Structure, Quaternary,
Affiliations: *** IBB - CNR ***
Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, University of Buenos Aires, Buenos Aires, Argentina
Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126 Napoli, Italy
Institute of Biostructures and Bioimages, CNR, via Mezzocannone 16, 80100 Napoli, Italy
Departamento de Qu mica Inorg nica, Anal tica y Qu mica F sica, INQUIMAE-CONICET, University of Buenos Aires, Buenos Aires, Argentina
References: Stamler, J.S., Singel, D.J., Loscalzo, J., Biochemistry of nitric oxide and its redox-activated forms (1992) Science, 258, pp. 1898-190
Gladwin, M.T., Kim-Shapiro, D.B., Vascular biology: Nitric oxide caught in traffic (2012) Nature, 491, pp. 344-345
Tomasian, D., Keaney, J.F., Vita, J.A., Antioxidants and the bioactivity of endothelium-derived nitric oxide (2000) Cardiovasc. Res., 47, pp. 426-435
Radomski, M.W., Palmer, R.M., Moncada, S., Characterization of the l-arginine/nitric oxide pathway in human platelets (1990) Br. J. Pharmacol., 101, pp. 325-328
Pawloski, J.R., Swaminathan, R.V., Stamler, J.S., Cell-free and erythrocytic S-nitrosohemoglobin inhibits human platelet aggregation (1998) Circulation, 97, pp. 263-267
Gladwin, M.T., Crawford, J.H., Patel, R.P., The biochemistry of nitric oxide, nitrite, and hemoglobin: Role in blood flow regulation (2004) Free Radic. Biol. Med., 36, pp. 707-717
Gladwin, M.T., Lancaster Jr., J.R., Freeman, B.A., Schechter, A.N., Nitric oxide's reactions with hemoglobin: A view through the SNO-storm (2003) Nat. Med., 9, pp. 496-500
Maxwell, J.C., Caughey, W.S., An infrared study of nitric oxide bonding to heme B and hemoglobin A. Evidence for inositol hexaphosphate induced cleavage of proximal histidine to iron bonds (1976) Biochemistry, 15, pp. 388-396
Szabo, A., Perutz, M.F., Equilibrium between six- and five-coordinated hemes in nitrosylhemoglobin: Interpretation of electron spin resonance spectra (1976) Biochemistry, 15, pp. 4427-4428
Hille, R., Olson, J.S., Palmer, G., Spectral transitions of nitrosyl hemes during ligand binding to hemoglobin (1979) J. Biol. Chem., 254, pp. 12110-12120
Arcovito, A., Della Longa, S., Ligand binding intermediates of nitrosylated human hemoglobin induced at low temperature by X-ray irradiation (2011) Inorg. Chem., 50, pp. 9423-9429
Bonaventura, J., Lance, V., Nitric Oxide, invertebrates and hemoglobin (2001) Amer. Zool., 41, pp. 346-359
Jia, L., Bonaventura, C., Bonaventura, J., Stamler, J.S., S-nitrosohaemoglobin: A dynamic activity of blood involved in vascular control (1996) Nature, 380, pp. 221-226
Eich, R.F., Mechanism of NO-induced oxidation of myoglobin and hemoglobin (1996) Biochemistry, 35, pp. 6976-6983
Cabrales, P., Han, G., Nacharaju, P., Friedman, A.J., Friedman, J.M., Reversal of hemoglobin-induced vasoconstriction with sustained release of nitric oxide (2011) Am. J. Physiol. Heart Circ. Physiol., 300, pp. H49-H56
Wang, D., In vivo reduction of cell-free methemoglobin to oxyhemoglobin results in vasoconstriction in canines (2013) Transfusion, , http://dx.doi.org/10.1111/trf.12162, [Epub ahead of print]
Stepuro, T.L., Zinchuk, V.V., Nitric oxide effect on the hemoglobin-oxygen affinity (2006) J. Physiol. Pharmacol., 57, pp. 29-38
Jensen, F.B., The dual roles of red blood cells in tissue oxygen delivery: Oxygen carriers and regulators of local blood flow (2009) J. Exp. Biol., 212, pp. 3387-3393
Funai, E.F., Davidson, A., Seligman, S.P., Finlay, T.H., S-nitrosohemoglobin in the fetal circulation may represent a cycle for blood pressure regulation (1997) Biochem. Biophys. Res. Commun., 239, pp. 875-877
Gow, A.J., Stamler, J.S., Reactions between nitric oxide and haemoglobin under physiological conditions (1998) Nature, 391, pp. 169-173
Chan, N.L., Kavanaugh, J.S., Rogers, P.H., Arnone, A., Crystallographic analysis of the interaction of nitric oxide with quaternary-T human hemoglobin (2004) Biochemistry, 43, pp. 118-132
Szabo, A., Barron, L.D., Letter: Resonance Raman studies of nitric oxide hemoglobin (1975) J. Am. Chem. Soc., 97, pp. 660-662
Perutz, M.F., Kilmartin, J.V., Nagai, K., Szabo, A., Simon, S.R., Influence of globin structures on the state of the heme. Ferrous low spin derivatives (1976) Biochemistry, 15, pp. 378-387
Perutz, M.F., Regulation of oxygen affinity of hemoglobin (1979) Annu. Rev. Biochem., 48, pp. 327-386
Mingos, D.M.P., A general bonding model for linear and bent transition metal-nitrosyl complexes (1973) Inorg. Chem., 12, pp. 1209-1211
Hoffmann, R.M., Chen, M.L., Elian, M., Rossi, A.R., Mingos, D.M.P., Pentacoordinate nitrosyls (1974) Inorg. Chem., 13, pp. 2666-2675
Boechi, L., Marti, M.A., Vergara, A., Sica, F., Mazzarella, L., Estrin, D.A., Merlino, A., Protonation of histidine 55 affects the oxygen access to heme in the alpha chain of the hemoglobin from the Antarctic fish Trematomus bernacchii (2011) IUBMB Life, 63, pp. 175-182
Balsamo, A., Sannino, F., Merlino, A., Parrilli, E., Tutino, M.L., Mazzarella, L., Vergara, A., Role of the tertiary and quaternary structure in the formation of bis-histidyl adducts in cold-adapted hemoglobins (2012) Biochimie, 94, pp. 953-960
Merlino, A., Vergara, A., Sica, F., Aschi, M., Amadei, A., Di Nola, A., Mazzarella, L., Free-energy profile for CO binding to separated chains of human and Trematomus newnesi hemoglobin: Insights from molecular dynamics simulations and perturbed matrix method (2010) J. Phys. Chem. B, 114, pp. 7002-7008
Arroyo-Manez, P., Protein dynamics and ligand migration interplay as studied by computer simulation (2011) Biochim. Biophys. Acta, 1814, pp. 1054-1064
Bikiel, D.E., Modeling heme proteins using atomistic simulations (2006) Phys. Chem. Chem. Phys., 8, pp. 5611-5628
Crespo, A., Scherlis, D.A., Marti, M.A., Ordejon, P., Roitberg, A.E., Estrin, D.A., A DFT based QM-MM approach designed for the treatment of large molecular systems: Application to Chorismate mutase (2003) J. Phys. Chem. B, 49, pp. 13728-13736
Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 18, pp. 3865-3868
Marti, M.A., Scherlis, D.A., Doctorovich, F.A., Ordejon, P., Estrin, D.A., Modulation of the NO trans effect in heme proteins: Implications for the activation of soluble guanylate cyclase (2003) J. Biol. Inorg. Chem., 8, pp. 595-600
Capece, L., Estrin, D.A., Marti, M.A., Dynamical characterization of the heme NO oxygen binding (HNOX) domain. Insight into soluble guanylate cyclase allosteric transition (2008) Biochemistry, 47, pp. 9416-9427
Capece, L., Marti, M.A., Crespo, A., Doctorovich, F., Estrin, D.A., Heme protein oxygen affinity regulation exerted by proximal effects (2006) J. Am. Chem. Soc., 128, pp. 12455-12461
Marti, M.A., Capece, L., Crespo, A., Doctorovich, F., Estrin, D.A., Nitric oxide interaction with cytochrome c′ and its relevance to guanylate cyclase. Why does the iron histidine bond break? (2005) J. Am. Chem. Soc., 127, pp. 7721-7728
Case, D.A., The Amber biomolecular simulation programs (2005) J. Comput. Chem., 26, pp. 1668-1688
Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., Dinola, A., Haak, J.R., Molecular-dynamics with coupling to an external bath (1984) J. Chem. Phys., 81, pp. 3684-3690
Ryckaert, J.P., Ciccotti, G., Berendsen, H.J.C., Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes (1977) J. Comput. Phys., 23, pp. 327-341
Sasaki, J., Imamura, T., Yanase, T., Hemoglobin Hirose, a human hemoglobin variant with a substitution at the alpha1beta2 interface. Subunit dissociation and the equilibria and kinetics of ligand binding (1978) J. Biol. Chem., 253, pp. 87-94
Owen, M.C., Oekelford, P.A., Wells, R.M.G., Hb Howick [β37(C3)TRP→GLY]: A new high oxygen affinity variant of the α1β2 contact (1993) Hemoglobin, 17, pp. 513-521
Hub, J.S., Kubitzki, M.B., De Groot, B.L., Spontaneous quaternary and tertiary T-R transitions of human hemoglobin in molecular dynamics simulation (2010) PLoS Comput. Biol., 6, p. 1000774
Saito, M., Okazaki, I., A 45-ns molecular dynamics simulation of hemoglobin in water by vectorizing and parallelizing COSMOS90 on the earth simulator: Dynamics of tertiary and quaternary structures (2007) J. Comput. Chem., 28, pp. 1129-1136
Merlino, A., Fuchs, M.R., Pica, A., Balsamo, A., Dworkowski, F.S., Pompidor, G., Mazzarella, L., Vergara, A., Selective X-ray-induced NO photodissociation in haemoglobin crystals: Evidence from a Raman-assisted crystallographic study (2013) Acta Crystallogr. D Biol. Crystallogr., 69, pp. 137-140
Stamler, J. S., Singel, D. J., Loscalzo, J., Biochemistry of nitric oxide and its redox-activated forms (1992) Science, 258, pp. 1898-190
Gladwin, M. T., Kim-Shapiro, D. B., Vascular biology: Nitric oxide caught in traffic (2012) Nature, 491, pp. 344-345
Radomski, M. W., Palmer, R. M., Moncada, S., Characterization of the l-arginine/nitric oxide pathway in human platelets (1990) Br. J. Pharmacol., 101, pp. 325-328
Pawloski, J. R., Swaminathan, R. V., Stamler, J. S., Cell-free and erythrocytic S-nitrosohemoglobin inhibits human platelet aggregation (1998) Circulation, 97, pp. 263-267
Gladwin, M. T., Crawford, J. H., Patel, R. P., The biochemistry of nitric oxide, nitrite, and hemoglobin: Role in blood flow regulation (2004) Free Radic. Biol. Med., 36, pp. 707-717
Gladwin, M. T., Lancaster Jr., J. R., Freeman, B. A., Schechter, A. N., Nitric oxide's reactions with hemoglobin: A view through the SNO-storm (2003) Nat. Med., 9, pp. 496-500
Maxwell, J. C., Caughey, W. S., An infrared study of nitric oxide bonding to heme B and hemoglobin A. Evidence for inositol hexaphosphate induced cleavage of proximal histidine to iron bonds (1976) Biochemistry, 15, pp. 388-396
Eich, R. F., Mechanism of NO-induced oxidation of myoglobin and hemoglobin (1996) Biochemistry, 35, pp. 6976-6983
Stepuro, T. L., Zinchuk, V. V., Nitric oxide effect on the hemoglobin-oxygen affinity (2006) J. Physiol. Pharmacol., 57, pp. 29-38
Jensen, F. B., The dual roles of red blood cells in tissue oxygen delivery: Oxygen carriers and regulators of local blood flow (2009) J. Exp. Biol., 212, pp. 3387-3393
Funai, E. F., Davidson, A., Seligman, S. P., Finlay, T. H., S-nitrosohemoglobin in the fetal circulation may represent a cycle for blood pressure regulation (1997) Biochem. Biophys. Res. Commun., 239, pp. 875-877
Gow, A. J., Stamler, J. S., Reactions between nitric oxide and haemoglobin under physiological conditions (1998) Nature, 391, pp. 169-173
Chan, N. L., Kavanaugh, J. S., Rogers, P. H., Arnone, A., Crystallographic analysis of the interaction of nitric oxide with quaternary-T human hemoglobin (2004) Biochemistry, 43, pp. 118-132
Perutz, M. F., Kilmartin, J. V., Nagai, K., Szabo, A., Simon, S. R., Influence of globin structures on the state of the heme. Ferrous low spin derivatives (1976) Biochemistry, 15, pp. 378-387
Perutz, M. F., Regulation of oxygen affinity of hemoglobin (1979) Annu. Rev. Biochem., 48, pp. 327-386
Mingos, D. M. P., A general bonding model for linear and bent transition metal-nitrosyl complexes (1973) Inorg. Chem., 12, pp. 1209-1211
Hoffmann, R. M., Chen, M. L., Elian, M., Rossi, A. R., Mingos, D. M. P., Pentacoordinate nitrosyls (1974) Inorg. Chem., 13, pp. 2666-2675
Bikiel, D. E., Modeling heme proteins using atomistic simulations (2006) Phys. Chem. Chem. Phys., 8, pp. 5611-5628
Perdew, J. P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 18, pp. 3865-3868
Marti, M. A., Scherlis, D. A., Doctorovich, F. A., Ordejon, P., Estrin, D. A., Modulation of the NO trans effect in heme proteins: Implications for the activation of soluble guanylate cyclase (2003) J. Biol. Inorg. Chem., 8, pp. 595-600
Marti, M. A., Capece, L., Crespo, A., Doctorovich, F., Estrin, D. A., Nitric oxide interaction with cytochrome c and its relevance to guanylate cyclase. Why does the iron histidine bond break? (2005) J. Am. Chem. Soc., 127, pp. 7721-7728
Case, D. A., The Amber biomolecular simulation programs (2005) J. Comput. Chem., 26, pp. 1668-1688
Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., Dinola, A., Haak, J. R., Molecular-dynamics with coupling to an external bath (1984) J. Chem. Phys., 81, pp. 3684-3690
Ryckaert, J. P., Ciccotti, G., Berendsen, H. J. C., Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes (1977) J. Comput. Phys., 23, pp. 327-341
Owen, M. C., Oekelford, P. A., Wells, R. M. G., Hb Howick [37 (C3) TRP GLY]: A new high oxygen affinity variant of the 1 2 contact (1993) Hemoglobin, 17, pp. 513-521
Hub, J. S., Kubitzki, M. B., De Groot, B. L., Spontaneous quaternary and tertiary T-R transitions of human hemoglobin in molecular dynamics simulation (2010) PLoS Comput. Biol., 6, p. 1000774
Molecular basis of the NO trans influence in quaternary T-state human hemoglobin: A computational study
NO binding to the T-state of human hemoglobin (HbA) induces the cleavage of the proximal His bonds to the heme iron in the alpha-chains, whereas it leaves the beta-hemes hexacoordinated. The structure of the nitrosylated T-state of the W37E beta mutant (W37E) shows that the Fe-His87 alpha bond remains intact. Exactly how mutation affects NO binding and why tension is apparent only in HbA alpha-heme remains to be elucidated. By means of density functional theory electronic structure calculations and classical molecular dynamics simulations we provide an explanation for the poorly understood NO binding properties of HbA and its W37E mutant. The data suggest an interplay between electronic effects, tertiary structure and hydration site modifications in determining the tension in the NO-ligated T-state HbA alpha-chain. (C) 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Molecular basis of the NO trans influence in quaternary T-state human hemoglobin: A computational study
Santulli G, Cipolletta E, Sorriento D, Del Giudice C, Anastasio A, Monaco S, Maione AS, Condorelli G, Puca A, Trimarco B, Illario M, Iaccarino G * CaMK4 gene deletion induces hypertension(349 views) J Am Heart Assoc Journal Of The American Heart Association (ISSN: 2047-9980), 2012; 1(4): N/D-N/D. Impact Factor:2.882 ViewExport to BibTeXExport to EndNote