Comparison of control of Listeria by nitric oxide redox chemistry from murine macrophages and no donors: Insights into listeriocidal activity of oxidative and nitrosative stress
Comparison of control of Listeria by nitric oxide redox chemistry from murine macrophages and no donors: Insights into listeriocidal activity of oxidative and nitrosative stress(688 views) Ogawa R, Pacelli R, Espey MG, Miranda KM, Friedman N, Kim SM, Cox G, Mitchell JB, Wink DA, Russo A
Free Radic Biol Med (ISSN: 0891-5849, 0891-5849linking, 1873-4596electronic), 2001 Feb 1; 30(3): 268-276.
Radiation Biology Branch, National Cancer Institute, Bethesda, MD, United States
Department of Immunology, Uniform Services Health Science University, Bethesda, MD, United States
References: Nathan, C.F., Hibbs J.B., Jr., Role of nitric oxide synthesis in macrophage antimicrobial activity (1991) Curr. Opin. Immunol., 3, pp. 65-7
Fang, F.C., Perspectives series: Host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity (1997) J. Clin. Invest., 99, pp. 2818-2825
Reiss, C.S., Komatsu, T., Does nitric oxide play a role in viral infections? (1998) J. Virol., 72, pp. 4547-4551
Bogdan, C., Of microbes, macrophages and nitric oxide (1997) Behring Inst. Mitt., 99, pp. 58-72
Granger, D.L., Hibbs J.B., Jr., High-output nitric oxide: Weapon against infection? (1996) Trends Microbiol., 4, pp. 46-47
Pacelli, R., Wink, D.A., Cook, J.A., Krishna, M.C., DeGraff, W., Friedman, N., Tsokos, M., Mitchell, J.B., Nitric oxide potentiates hydrogen peroxide-induced killing of Escherichia coli (1995) J. Exp. Med., 182, pp. 1469-1479
Kaplan, S.S., Lancaster, J.R., Basford, R.E., Simmons, R.L., Effect of nitric oxide on staphylococcal killing and interactive effect with superoxide (1996) Infect. Immun., 64, pp. 69-76
Godfrey, R.W., Wilder, M.S., Relationships between oxidative metabolism, macrophage activation, and antilisterial activity (1984) J. Leukoc. Biol., 36, pp. 533-543
Beckerman, K.P., Rogers, H.W., Corbett, J.A., Schreiber, R.D., McDaniel, M.L., Unanue, E.R., Release of nitric oxide during the T cell-independent pathway of macrophage activation. Its role in resistance to Listeria monocytogenes (1993) J. Immunol., 150, pp. 888-895
Boockvar, K.S., Granger, D.L., Poston, R.M., Maybodi, M., Washington, M.K., Hibbs J.B., Jr., Kurlander, R.L., Nitric oxide produced during murine listeriosis is protective (1994) Infect. Immun., 62, pp. 1089-1100
Gregory, S.H., Wing, E.J., Hoffman, R.A., Simmons, R.L., Reactive nitrogen intermediates suppress the primary immunologic response to Listeria (1993) J. Immunol., 150, pp. 2901-2909
Shiloh, M.U., MacMicking, J.D., Nicholson, S., Brause, J.E., Potter, S., Marino, M., Fang, F.C., Nathan, C., Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase (1999) Immunity, 10, pp. 29-38
Kaufmann, S.H., Immunity to intracellular bacteria (1993) Annu. Rev. Immunol., 11, pp. 129-163
Portnoy, D.A., Schreiber, R.D., Connelly, P., Tilney, L.G., Gamma interferon limits access of Listeria monocytogenes to the macrophage cytoplasm (1989) J. Exp. Med., 170, pp. 2141-2146
Conlan, J.W., North, R.J., Neutrophil-mediated dissolution of infected host cells as a defense strategy against a facultative intracellular bacterium (1991) J. Exp. Med., 174, pp. 741-744
Dunn, P.L., North, R.J., Early gamma interferon production by natural killer cells is important in defense against murine listeriosis (1991) Infect. Immun., 59, pp. 2892-2900
Harty, J.T., Bevan, M., Specific immunity to Listeria monocytogenes in the absence of IFN gamma (1995) Immunity, 3, pp. 109-117
Kaufmann, S.H., Ladel, C.H., Role of T cell subsets in immunity against intracellular infections of knockout mice with Listeria monocytogenes, and Mycobacterium bovis BCG (1994) Immunobiology, 191, pp. 509-516
Maragos, C.M., Morley, D., Wink, D.A., Dunams, T.M., Saavedra, J.E., Hoffman, A., Bove, A.A., Keefer, L.K., Complexes of NO with nucleophiles as agents for the controlled biological release of nitric oxide. Vasorelaxant effects (1991) J. Med. Chem., 34, pp. 3242-3247
Hrabie, J., Klose, J., Wink, D.A., Keefer, L.K., New nitric oxide-releasing zwitterion derived polyamines (1993) J. Org. Chem., 58, pp. 1472-1476
Fridovich, I., Xanthine oxidase , pp. 213-215. , Greenwald, R. A., ed. Handbook of methods for oxygen radical research. Boca Raton, FL: CRC PressBergmeyer, H.U., (1985) Methods in enzymatic analysis (2nd ed.), 1, pp. 521-522. , Deerfield Beach, FL: Verlag Chemie Int
Cox, G.W., Mathieson, B.J., Gandino, L., Blasi, E., Radzioch, D., Varesio, L., Heterogeneity of hematopoietic cells immortalized by v-myc/v-raf recombinant retrovirus infection of bone marrow or fetal liver (1989) J. Natl. Cancer Inst., 81, pp. 1492-1496
Miles, A.M., Wink, D.A., Cook, J.C., Grisham, M.B., Determination of nitric oxide using fluorescence spectroscopy (1996) Methods Enzymol, 268, pp. 105-120
Mocci, S., Dalrymple, S.A., Nishinakamura, R., Murray, R., The cytokine stew and innate resistance to L. monocytogenes (1997) Immunol. Rev., 158, pp. 107-114
Samsom, J.N., Langermans, J.A., Groeneveld, P.H., Van Furth, R., Acquired resistance against a secondary infection with Listeria monocytogenes in mice is not dependent on reactive nitrogen intermediates (1996) Infect. Immun., 64, pp. 1197-1202
Leenen, P.J., Canono, B.P., Drevets, D.A., Voerman, J.S., Campbell, P.A., TNF-alpha and IFN-gamma stimulate a macrophage precursor cell line to kill Listeria monocytogenes in a nitric oxide-independent manner (1994) J. Immunol., 153, pp. 5141-5147
Ohya, S., Tanabe, Y., Makino, M., Nomura, T., Xiong, H., Arakawa, M., Mitsuyama, M., The contributions of reactive oxygen intermediates and reactive nitrogen intermediates to listericidal mechanisms differ in macrophages activated pre- and postinfection (1998) Infect. Immun., 66, pp. 4043-4049
Endres, R., Luz, A., Schulze, H., Neubauer, H., Futterer, A., Holland, S.M., Wagner, H., Pfeffer, K., Listeriosis in p47(phox-/-) and TRp55-/- mice: Protection despite absence of ROI and susceptibility despite presence of RNI (1997) Immunity, 7, pp. 419-432
Dai, W.J., Bartens, W., Kohler, G., Hufnagel, M., Kopf, M., Brombacher, F., Impaired macrophage listericidal and cytokine activities are responsible for the rapid death of Listeria monocytogenes-infected IFN-gamma receptor-deficient mice (1997) J. Immunol., 158, pp. 5297-5304
Miles, A.M., Gibson, M., Krishna, M., Cook, J.C., Pacelli, R., Wink, D.A., Grisham, M.B., Effects of superoxide on nitric oxide-dependent N-nitrosation reactions (1995) Free Radic. Res., 23, pp. 379-390
Gaston, B., Nitric oxide and thiol groups (1999) Biochim. Biophys. Acta., 1411, pp. 323-333
Vodovotz, Y., Chesler, L., Chong, H., Kim, S.J., Simpson, J.T., DeGraff, W., Cox, G.W., Barcellos-Hoff, M.H., Regulation of transforming growth factor beta1 by nitric oxide (1999) Cancer Res., 59, pp. 2142-2149
Wink, D.A., Mitchell, J.B., Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide (1998) Free Radic. Biol. Med., 25, pp. 434-456
Persichini, T., Colasanti, M., Lauro, G.M., Ascenzi, P., Cysteine nitrosylation inactivates the HIV-1 protease (1998) Biochem. Biophys. Res. Commun., 250, pp. 575-576
Gergel, D., Cederbaum, A.I., Inhibition of the catalytic activity of alcohol dehydrogenase by nitric oxide is associated with S nitrosylation and the release of zinc (1996) Biochemistry, 35, pp. 16186-16194
Braun, J.S., Novak, R., Gao, G., Murray, P.J., Shenep, J.L., Pneumolysin, a protein toxin of Streptococcus pneumoniae, induces nitric oxide production from macrophages (1999) Infect. Immun., 67, pp. 3750-3756
Welch, R.A., Pore-forming cytolysins of gram-negative bacteria (1991) Mol. Microbiol., 5, pp. 521-528
Murray, H.W., Nathan, C.F., Macrophage microbicidal mechanisms in vivo: Reactive nitrogen versus oxygen intermediates in the killing of intracellular Leishmania donovani (1999) J. Exp. Med., 189, pp. 741-746
Prada, J., Muller, S., Bienzle, U., Kremsner, P.G., Upregulation of reactive oxygen and nitrogen intermediates in Plasmodium berghei infected mice after rescue therapy with chloroquine or artemether (1996) J. Antimicrob. Chemother., 38, pp. 95-102
Karupiah, G., Xie, Q.W., Buller, R.M., Nathan, C., Duarte, C., MacMicking, J.D., Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase (1993) Science, 261, pp. 1445-1448
Nathan, C. F., Hibbs J. B., Jr., Role of nitric oxide synthesis in macrophage antimicrobial activity (1991) Curr. Opin. Immunol., 3, pp. 65-7
Fang, F. C., Perspectives series: Host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity (1997) J. Clin. Invest., 99, pp. 2818-2825
Reiss, C. S., Komatsu, T., Does nitric oxide play a role in viral infections? (1998) J. Virol., 72, pp. 4547-4551
Granger, D. L., Hibbs J. B., Jr., High-output nitric oxide: Weapon against infection? (1996) Trends Microbiol., 4, pp. 46-47
Kaplan, S. S., Lancaster, J. R., Basford, R. E., Simmons, R. L., Effect of nitric oxide on staphylococcal killing and interactive effect with superoxide (1996) Infect. Immun., 64, pp. 69-76
Godfrey, R. W., Wilder, M. S., Relationships between oxidative metabolism, macrophage activation, and antilisterial activity (1984) J. Leukoc. Biol., 36, pp. 533-543
Beckerman, K. P., Rogers, H. W., Corbett, J. A., Schreiber, R. D., McDaniel, M. L., Unanue, E. R., Release of nitric oxide during the T cell-independent pathway of macrophage activation. Its role in resistance to Listeria monocytogenes (1993) J. Immunol., 150, pp. 888-895
Boockvar, K. S., Granger, D. L., Poston, R. M., Maybodi, M., Washington, M. K., Hibbs J. B., Jr., Kurlander, R. L., Nitric oxide produced during murine listeriosis is protective (1994) Infect. Immun., 62, pp. 1089-1100
Gregory, S. H., Wing, E. J., Hoffman, R. A., Simmons, R. L., Reactive nitrogen intermediates suppress the primary immunologic response to Listeria (1993) J. Immunol., 150, pp. 2901-2909
Shiloh, M. U., MacMicking, J. D., Nicholson, S., Brause, J. E., Potter, S., Marino, M., Fang, F. C., Nathan, C., Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase (1999) Immunity, 10, pp. 29-38
Kaufmann, S. H., Immunity to intracellular bacteria (1993) Annu. Rev. Immunol., 11, pp. 129-163
Portnoy, D. A., Schreiber, R. D., Connelly, P., Tilney, L. G., Gamma interferon limits access of Listeria monocytogenes to the macrophage cytoplasm (1989) J. Exp. Med., 170, pp. 2141-2146
Conlan, J. W., North, R. J., Neutrophil-mediated dissolution of infected host cells as a defense strategy against a facultative intracellular bacterium (1991) J. Exp. Med., 174, pp. 741-744
Dunn, P. L., North, R. J., Early gamma interferon production by natural killer cells is important in defense against murine listeriosis (1991) Infect. Immun., 59, pp. 2892-2900
Harty, J. T., Bevan, M., Specific immunity to Listeria monocytogenes in the absence of IFN gamma (1995) Immunity, 3, pp. 109-117
Kaufmann, S. H., Ladel, C. H., Role of T cell subsets in immunity against intracellular infections of knockout mice with Listeria monocytogenes, and Mycobacterium bovis BCG (1994) Immunobiology, 191, pp. 509-516
Maragos, C. M., Morley, D., Wink, D. A., Dunams, T. M., Saavedra, J. E., Hoffman, A., Bove, A. A., Keefer, L. K., Complexes of NO with nucleophiles as agents for the controlled biological release of nitric oxide. Vasorelaxant effects (1991) J. Med. Chem., 34, pp. 3242-3247
Cox, G. W., Mathieson, B. J., Gandino, L., Blasi, E., Radzioch, D., Varesio, L., Heterogeneity of hematopoietic cells immortalized by v-myc/v-raf recombinant retrovirus infection of bone marrow or fetal liver (1989) J. Natl. Cancer Inst., 81, pp. 1492-1496
Miles, A. M., Wink, D. A., Cook, J. C., Grisham, M. B., Determination of nitric oxide using fluorescence spectroscopy (1996) Methods Enzymol, 268, pp. 105-120
Samsom, J. N., Langermans, J. A., Groeneveld, P. H., Van Furth, R., Acquired resistance against a secondary infection with Listeria monocytogenes in mice is not dependent on reactive nitrogen intermediates (1996) Infect. Immun., 64, pp. 1197-1202
Leenen, P. J., Canono, B. P., Drevets, D. A., Voerman, J. S., Campbell, P. A., TNF-alpha and IFN-gamma stimulate a macrophage precursor cell line to kill Listeria monocytogenes in a nitric oxide-independent manner (1994) J. Immunol., 153, pp. 5141-5147
Dai, W. J., Bartens, W., Kohler, G., Hufnagel, M., Kopf, M., Brombacher, F., Impaired macrophage listericidal and cytokine activities are responsible for the rapid death of Listeria monocytogenes-infected IFN-gamma receptor-deficient mice (1997) J. Immunol., 158, pp. 5297-5304
Miles, A. M., Gibson, M., Krishna, M., Cook, J. C., Pacelli, R., Wink, D. A., Grisham, M. B., Effects of superoxide on nitric oxide-dependent N-nitrosation reactions (1995) Free Radic. Res., 23, pp. 379-390
Wink, D. A., Mitchell, J. B., Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide (1998) Free Radic. Biol. Med., 25, pp. 434-456
Braun, J. S., Novak, R., Gao, G., Murray, P. J., Shenep, J. L., Pneumolysin, a protein toxin of Streptococcus pneumoniae, induces nitric oxide production from macrophages (1999) Infect. Immun., 67, pp. 3750-3756
Welch, R. A., Pore-forming cytolysins of gram-negative bacteria (1991) Mol. Microbiol., 5, pp. 521-528
Murray, H. W., Nathan, C. F., Macrophage microbicidal mechanisms in vivo: Reactive nitrogen versus oxygen intermediates in the killing of intracellular Leishmania donovani (1999) J. Exp. Med., 189, pp. 741-746
Comparison of control of Listeria by nitric oxide redox chemistry from murine macrophages and no donors: Insights into listeriocidal activity of oxidative and nitrosative stress
The physiological function of nitric oxide (NO) in the defense against pathogens is multifaceted. The exact chemistry by which NO combats intracellular pathogens such as Listeria monocytogenes is yet unresolved. We examined the effects of NO exposure, either delivered by NO donors ol generated in situ within ANA-1 murine macrophages. on L. monocytogenes growth. Production of NO by the two NONOate compounds PAPA/NO (NH2(C3H6)(N[N(O)NO]C3H7)) and DEA/NO (Na(C2H5)(2)N[N(O)NO]) resulted in L. monocytogenes cytostasis with minimal cytotoxicity. Reactive oxygen species generated from xanthine oxidase/hypoxanthine were neither bactericidal nor cytostatic and did not alter the action of NO. L. monocytogenes growth was also suppressed upon internalization into ANA-1 murine macrophages primed with interferon-gamma (INF-gamma) + tumor necrosis factor-alpha TNF-alpha or INF-gamma + lipid polysaccharide (LPS). Growth suppression correlated with nitrite formation and nitrosation of 2,3-diaminonaphthalene elicited by stimulated murine macrophages. This: nitrosative chemistry was not dependent upon nor mediated by interaction with reactive oxygen species (ROS), but resulted solely from NO and intermediates related to nitrosative stress. The role of nitrosation in controlling L. monocytogenes was further examined by monitoring the effects of exposure to NO on an important virulence factor, Listeriolysin O, which was inhibited under nitrosative conditions. These results suggest that nitrosative stress mediated by macrophages is an important component of the immunological arsenal in controlling L. monocytogenes infections. (C) 2001 Elsevier Science Inc.
Comparison of control of Listeria by nitric oxide redox chemistry from murine macrophages and no donors: Insights into listeriocidal activity of oxidative and nitrosative stress
Comparison of control of Listeria by nitric oxide redox chemistry from murine macrophages and no donors: Insights into listeriocidal activity of oxidative and nitrosative stress