Small peptide inhibitors of acetyl-peptide hydrolase having an uncommon mechanism of inhibition and a stable bent conformation(520 views) Sandomenico A, Russo A, Palmieri G, Bergamo P, Gogliettino M, Falcigno L, Ruvo M
J Med Chem (ISSN: 0022-2623, 1520-4804, 0022-2623print), 2012 Mar 8; 55(5): 2102-2111.
Istituto di Biostrutture e Bioimmagini, CNR, via Mezzocannone 16, 80134, Napoli, Italy
Istituto di Biochimica Delle Proteine, CNR, via P. Castellino, 111, 80132, Napoli, Italy
Istituto di Scienze Degli Alimenti, CNR, via Roma 64, 83100, Avellino, Italy
Dipartimento di Scienze Chimiche, Università di Napoli Federico II, via Cinthia, 80143, Napoli, Italy
References: Perrier, J., Durand, A., Giardina, T., Puigserver, A., Catabolism of intracellular N-terminal acetylated proteins: Involvement of acylpeptide hydrolase and acylase (2005) Biochimie, 87, pp. 673-68
Adibekian, A., Martin, B.R., Wang, C., Hsu, K.L., Bachovchin, D.A., Niessen, S., Hoover, H., Cravatt, B.F., Click-generated triazole ureas as ultrapotent in vivo-active serine hydrolase inhibitors (2011) Nat. Chem. Biol., 7, pp. 469-478
Narita, K., Isolation of acetylpeptide from enzymic digests of TMV-protein (1958) Biochim. Biophys. Acta, 28, pp. 184-191
Forte, G.M., Pool, M.R., Stirling, C.J., N-terminal acetylation inhibits protein targeting to the endoplasmic reticulum (2011) PLoS Biol., 9, p. 1001073
Shimizu, K., Kiuchi, Y., Ando, K., Hayakawa, M., Kikugawa, K., Coordination of oxidized protein hydrolase and the proteasome in the clearance of cytotoxic denatured proteins (2004) Biochem. Biophys. Res. Commun., 324, pp. 140-146
Palmieri, G., Bergamo, P., Luini, A., Ruvo, M., Gogliettino, M., Langella, E., Saviano, M., Rossi, M., Acyl Peptide hydrolase Inhibition as targeted strategy to induce proteasomal dysfunction (2011) PLoS One, 6 (10), p. 25888
Orlowski, R.Z., Kuhn, D.J., Proteasome inhibitors in cancer therapy: Lessons from the first decade (2008) Clin. Cancer Res., 14, pp. 1649-1657
Landis-Piwowar, K.R., Milacic, V., Chen, D., Yang, H., Zhao, Y., Chan, T.H., Yan, B., Dou, Q.P., The proteasome as a potential target for novel anticancer drugs and chemosensitizers (2006) Drug Resist. Updates, 9, pp. 263-273
Scaloni, A., Jones, W., Pospischil, M., Sassa, S., Schneewind, O., Popowicz, A.M., Bossa, F., Manning, J.M., Deficiency of acylpeptide hydrolase in small-cell lung carcinoma cell lines (1992) J. Lab. Clin. Med., 120, pp. 546-552
Palmieri, G., Langella, E., Gogliettino, M., Saviano, M., Pocsfalvi, G., Rossi, M., A novel class of protease targets of phosphatidylethanolamine-binding proteins (PEBP): A study of the acylpeptide hydrolase and the PEBP inhibitor from the archaeon Sulfolobus solfataricus (2010) Mol. Biosyst., 6, pp. 2498-2507
Olmos, C., Sandoval, R., Rozas, C., Navarro, S., Wyneken, U., Zeise, M., Morales, B., Pancetti, F., Effect of short-term exposure to dichlorvos on synaptic plasticity of rat hippocampal slices: Involvement of acylpeptide hydrolase and alpha(7) nicotinic receptors (2009) Toxicol. Appl. Pharmacol., 238, pp. 37-46
Marasco, D., Perretta, G., Sabatella, M., Ruvo, M., Past and future perspectives of synthetic peptide libraries (2008) Curr. Protein Pept. Sci., 9, pp. 447-467
Segel, I.H., (1975) Enzyme Kinetics, pp. 161-166. , Wiley Interscience: New York
Wishart, D.S., Sykes, B.D., Richards, F.M., Relationship between nuclear magnetic resonance chemical shift and protein secondary structure (1991) J. Mol. Biol., 222, pp. 311-333
Abe, F., Aoyagi, T., Physiological roles of ectoenzymes indicated by the use of aminopeptidase inhibitors (2002) Ectopeptidases. CD13/Aminopeptidase N and CD26/Dipeptidylpeptidase IV in Medicine and Biology, , In
Langner, J. Ansorge, S
Yamaguchi, M., Kambayashi, D., Toda, J., Sano, T., Toyoshima, S., Hojo, H., Acetylleucine chloromethyl ketone, an inhibitor of acylpeptide hydrolase, induces apoptosis of U937 cells (1999) Biochem. Biophys. Res. Commun., 263, pp. 139-142
Moerschell, R.P., Hosokawa, Y., Tsunasawa, S., Sherman, F., The specificities of yeast methionine aminopeptidase and acetylation of amino-terminal methionine in vivo. Processing of altered iso-1-cytochromes c created by oligonucleotide transformation (1990) J. Biol. Chem., 265, pp. 19638-19643
Constam, D.B., Tobler, A.R., Rensing-Ehl, A., Kemler, I., Hersh, L.B., Fontana, A., Puromycin-sensitive aminopeptidase. Sequence analysis, expression, and functional characterization (1995) J. Biol. Chem., 270, pp. 26931-26939
Wickstrom, M., Larsson, R., Nygren, P., Gullbo, J., Aminopeptidase N (CD13) as a target for cancer chemotherapy (2011) Cancer Sci., 102, pp. 501-508
Moore, H.E., Davenport, E.L., Smith, E.M., Muralikrishnan, S., Dunlop, A.S., Walker, B.A., Krige, D., Davies, F.E., Aminopeptidase inhibition as a targeted treatment strategy in myeloma (2009) Mol. Cancer Ther., 8, pp. 762-770
Casida, J.E., Quistad, G.B., Serine hydrolase targets of organophosphorus toxicants (2005) Chem. Biol. Interact., 157-158, pp. 277-283
Westley, A.M., Westley, J., Enzyme inhibition in open systems. Superiority of uncompetitive agents (1996) J. Biol. Chem., 271, pp. 5347-52
Fields, G.B., Noble, R.L., Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids (1990) Int. J. Pept. Protein Res., 35, pp. 161-214
Palmieri, G., Catara, G., Saviano, M., Langella, E., Gogliettino, M., Rossi, M., First Archaeal PEPB-Serine Protease Inhibitor from Sulfolobus solfataricus with Noncanonical Amino Acid Sequence in the Reactive-Site Loop (2009) J. Proteome Res., 8, pp. 327-334
Decker, T., Lohmann-Matthes, M.L., A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity (1988) J. Immunol. Methods, 115, pp. 61-69
Forte, G. M., Pool, M. R., Stirling, C. J., N-terminal acetylation inhibits protein targeting to the endoplasmic reticulum (2011) PLoS Biol., 9, p. 1001073
Orlowski, R. Z., Kuhn, D. J., Proteasome inhibitors in cancer therapy: Lessons from the first decade (2008) Clin. Cancer Res., 14, pp. 1649-1657
Landis-Piwowar, K. R., Milacic, V., Chen, D., Yang, H., Zhao, Y., Chan, T. H., Yan, B., Dou, Q. P., The proteasome as a potential target for novel anticancer drugs and chemosensitizers (2006) Drug Resist. Updates, 9, pp. 263-273
Segel, I. H., (1975) Enzyme Kinetics, pp. 161-166. , Wiley Interscience: New York
Wishart, D. S., Sykes, B. D., Richards, F. M., Relationship between nuclear magnetic resonance chemical shift and protein secondary structure (1991) J. Mol. Biol., 222, pp. 311-333
Moerschell, R. P., Hosokawa, Y., Tsunasawa, S., Sherman, F., The specificities of yeast methionine aminopeptidase and acetylation of amino-terminal methionine in vivo. Processing of altered iso-1-cytochromes c created by oligonucleotide transformation (1990) J. Biol. Chem., 265, pp. 19638-19643
Constam, D. B., Tobler, A. R., Rensing-Ehl, A., Kemler, I., Hersh, L. B., Fontana, A., Puromycin-sensitive aminopeptidase. Sequence analysis, expression, and functional characterization (1995) J. Biol. Chem., 270, pp. 26931-26939
Moore, H. E., Davenport, E. L., Smith, E. M., Muralikrishnan, S., Dunlop, A. S., Walker, B. A., Krige, D., Davies, F. E., Aminopeptidase inhibition as a targeted treatment strategy in myeloma (2009) Mol. Cancer Ther., 8, pp. 762-770
Casida, J. E., Quistad, G. B., Serine hydrolase targets of organophosphorus toxicants (2005) Chem. Biol. Interact., 157-158, pp. 277-283
Westley, A. M., Westley, J., Enzyme inhibition in open systems. Superiority of uncompetitive agents (1996) J. Biol. Chem., 271, pp. 5347-52
Fields, G. B., Noble, R. L., Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids (1990) Int. J. Pept. Protein Res., 35, pp. 161-214
Small peptide inhibitors of acetyl-peptide hydrolase having an uncommon mechanism of inhibition and a stable bent conformation
Petraglia F, Singh AA, Carafa V, Nebbioso A, Conte M, Scisciola L, Valente S, Baldi A, Mandoli A, Petrizzi VB, Ingenito C, De Falco S, Cicatiello V, Apicella I, Janssen-megens EM, Kim B, Yi G, Logie C, Heath S, Ruvo M, Wierenga ATJ, Flicek P, Yaspo ML, Della Valle V, Bernard O, Tomassi S, Novellino E, Feoli A, Sbardella G, Gut I, Vellenga E, Stunnenberg HG, Mai A, Martens JHA, Altucci L * Combined HAT/EZH2 modulation leads to cancer-selective cell death(284 views) Oncotarget (ISSN: 1949-2553electronic, 1949-2553linking), 2018 May 22; 9(39): 25630-25646. Impact Factor:5.008 ViewExport to BibTeXExport to EndNote