The LQSP tetrapeptide is a new highly efficient substrate of microbial transglutaminase for the site-specific derivatization of peptides and proteins(531 views) Caporale A, Selis F, Pain D, Sandomenico A, Jotti S, Tonon G, Ruvo M
Università di Napoli Federico IINapoli, Italy
BIOKER c/o CNR-IGBNapoli, Italy
Università di Parma, Dept of Biomedical, Biotechnological and Translational Science (S.Bi.Bi.T.)Parma, Italy
Universita di Napoli "Federico II", Napoli, Italy.
Universit di Napoli Federico IINapoli, Italy
Universit di Parma, Dept of Biomedical, Biotechnological and Translational Science (S. Bi. Bi. T.) Parma, Italy
BIOKER c/o CNR-IGB, Napoli, Italy
CNR-IBB, Napoli, Italy
References: Lee, J.H., Song, C., Kim, D.H., Park, I.H., Glutamine (Q)-Peptide Screening for Transglutamine Reaction Using mRNA Display. (2013) Biotechnol. Bioeng., 110, pp. 353-36
Shleikin, A.G., Danilov, N.P., Evolutionary-Biological Peculiarities of Transglutaminase. Structure, Physiological Functions, Application. (2011) J. Evol. Bioch. Physiol., 47, pp. 1-14
Rachel, N.M., Pelletier, J.N., Biotechnological Application of Transglutaminases. (2013) Biomolecules, 3, pp. 870-888
Yokoyama, K., Nio, N., Kikuchi, Y., Properties and Application of Microbial Transglutaminase. (2004) Appl Microbiol Biotechnol., 64, pp. 447-454
Fontana, A., Spolaore, B., Mero, A., Veronese, F.M., Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. (2008) Adv Drug Deliv Rev., 60, pp. 13-28
Harris, M., Chess, R., Effect of PEGylation on pharmaceuticals (2003) Nature Rev Drug Discovery, 2, pp. 214-221
Fee, C.J., Van Alstine, J.M., PEG-proteins: Reaction engineering and separation issues. (2005) Chem. Eng. Sci., 61, pp. 924-939
Mero, A., Spolaore, B., Veronese, F.M., Fontana, A., Transglutaminase-Mediated PEGylation of Proteins: Direct Identification of Site of Protein Modification by Mass Spectroscopy using a Novel Monodisperse PEG. (2009) Bioconjug Chem., 20, pp. 384-389
Maullu, C., Raimondo, D., Caboi, F., Giorgetti, A., Site-directed enzymatic PEGylation of the human granulocyte colony-stimulating factor. (2009) FEBS J., 22, pp. 6741-6750
Sato, H., Yamada, N., Shimba, N., Takahara, Y., Unique substrate specificities of two adjacent glutamine residues in EAQQIVM for transglutaminase: Identification and characterization of the reaction products by electrospray ionization tandem mass spectrometry. (2000) Anal. Biochem., 281, pp. 68-76
Ohtsuka, T., Ota, M., Nio, N., Motoki, M., Comparison of Substrate Specificities of Transglutaminases Using Synthetic Peptides as Acyl donors. (2000) Biosci Biotechnol Biochem., 64, pp. 2608-2613
Sugimura, Y., Hosono, M., Wada, F., Yoshimura, T., Screening for the preferred substrate sequence of transglutaminase using a phage-displayed peptide library: Identification of peptide substrates for TGase 2 and Factor XIIIA. (2006) J. Biol. Chem., 281, pp. 17699-17706
Spolaore, B., Raboni, S., Ramos Molina, A., Satwekar, A., Local unfolding is required for the site-specific protein modification by transglutaminase. (2012) Biochemistry, 51, pp. 8679-8689
Sato, H., Enzymatic procedure for site-specific PEGylation of proteins. (2002) Adv Drug Deliv Rev., 54, pp. 487-504
Sugimura, Y., Yokoyama, K., Nio, N., Maki, M., Identification of preferred substrate sequences of microbial transglutaminase from Streptomyces mobaraensis using a phage-displayed peptide library. (2008) Arch. Biochem. Biophys., 477, pp. 379-383
Sugimura, Y., Ueda, H., Maki, M., Hitomi, K., Novel site-specific immobilization of a functional protein using a preferred substrate sequence for transglutaminase 2 (2007) J Biotechnol., 131, pp. 121-127
Gnaccarini, C., Ben-Tahar, W., Mulani, A., Roy, I., Site-Specific protein propargylation using tissue transglutaminase. (2012) Org Biomol Chem., 10, pp. 5258-5265
Fields, G.B., Noble, R.L., Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. (1990) Int J Pept Protein Res., 35, pp. 161-214
Sandomenico, A., Russo, A., Palmieri, G., Bergamo, P., Small peptide inhibitors of acetyl-peptide hydrolase having an uncommon mechanism of inhibition and a stable bent conformation. (2012) Med Chem., 55, pp. 2102-2111
Miceli, R.M., De Graaf, M.E., Fischer, H.D., Two-stage selection of sequences from a random phage display library delineates both core residues and permitted structural range within an epitope. (1994) J. Immunol. Meth., 167, pp. 279-287
Kamiya, N., Abe, H., Goto, M., Tsuji, Y., Fluorescent substrates for covalent protein labeling catalyzed by microbial Transglutaminase. (2009) Org Biomol Chem., 7, pp. 3407-3412
Selis, F., Schrepfer, R., Sanna, R., Scaramuzza, S., Enzymatic mono-pegylation of glucagon-like peptide 1 towards long lasting treatment of type 2 diabetes. (2012) Results in Pharma Sciences, 2, pp. 58-65
Wegner, G.J., Lee, H.J., Corn, R.M., Characterization and optimization of peptide arrays for the study of epitope-antibody interactions using surface plasmon resonance imaging. (2002) Anal. Chem., 20, pp. 5161-5168
The LQSP tetrapeptide is a new highly efficient substrate of microbial transglutaminase for the site-specific derivatization of peptides and proteins
Kállay C, Dávid A, Timári S, Nagy EM, Sanna D, Garribba E, Micera G, De Bona P, Pappalardo G, Rizzarelli E, Sóvágó I * Copper(II) complexes of rat amylin fragments(357 views) Dalton T (ISSN: 1477-9234, 1477-9226, 1477-9234electronic), 2011 Oct 14; 40(38): 9711-9721. Impact Factor:3.838 ViewExport to BibTeXExport to EndNote