The combined use of conventional MRI and MR spectroscopic imaging increases the diagnostic accuracy in amyotrophic lateral sclerosis(422 views) Cervo A, Cocozza S, Saccà F, Giorgio SM, Morra VB, Tedeschi E, Marsili A, Vacca G, Palma V, Brunetti A, Quarantelli M
Keywords: Amyotrophic Lateral Sclerosis, Conventional Mri, Hyperintensity, Hypointensity, Magnetic Resonance Spectroscopy, Motor Cortex, N Acetylaspartic Acid, Adult, Controlled Study, Diagnostic Accuracy, Discriminant Analysis, Female, Human, Major Clinical Study, Nuclear Magnetic Resonance Imaging, Nuclear Magnetic Resonance Scanner, Nuclear Magnetic Resonance Spectrometer, Nuclear Magnetic Resonance Spectroscopy, Primary Motor Cortex, Pyramidal Tract, Retrospective Study, Sensitivity And Specificity, Choline, Creatine, N-Acetylaspartate, Analogs And Derivatives, Brain Cortex, Controlled Clinical Trial, Frontal Lobe, Metabolism, Middle Aged, Multimodal Imaging, Pathology, Procedures, Reproducibility, Very Elderly, 80 And Over, Cerebral Cortex, Reproducibility Of Results, Retrospective Studies,
Affiliations: *** IBB - CNR ***
Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy.
Department of Neurosciences, Reproductive Sciences and Odontostomatology, University "Federico II", Naples, Italy.
U.O.C. Neuro fi siopatologia, PO S. Gennaro ASL Napoli 1, Naples, Italy.
Biostructure and Bioimaging Institute, National Research Council, Naples, Italy.
U.O.C. Neurofisiopatologia, PO S. Gennaro ASL Napoli 1Naples, Italy
U. O. C. Neuro fi siopatologia, PO S. Gennaro ASL Napoli 1, Naples, Italy.
U. O. C. Neurofisiopatologia, PO S. Gennaro ASL Napoli 1Naples, Italy
University of Naples Federico II
PO S Gennaro ASL Napoli 1
Consiglio Nazionale delle Ricerche (CNR)
References: Charil, A., Corbo, M., Filippi, M., Structural and metabolic changes in the brain of patients with upper motor neuron disorders: A multiparametric MRI study (2009) Amyotroph Lateral Scler, 10 (5-6), pp. 269-27
Cheung, G., Gawel, M.J., Cooper, P.W., Farb, R.I., Ang, L.C., Gawal, M.J., Amyotrophic lateral sclerosis: Correlation of clinical and MR imaging findings (1995) Radiology, 194 (1), pp. 263-270
Hecht, M.J., Fellner, F., Fellner, C., Hilz, M.J., Heuss, D., Neundorfer, B., MRI-FLAIR images of the head show corticospinal tract alterations in ALS patients more frequently than T2-, T1- and proton-density-weighted images (2001) J Neurol Sci, 186 (1-2), pp. 37-44
Mirowitz, S., Sartor, K., Gado, M., Torack, R., Focal signal-intensity variations in the posterior internal capsule: Normal MR findings and distinction from pathologic findings (1989) Radiology, 172 (2), pp. 535-539
Bowen, B.C., Pattany, P.M., Bradley, W.G., MR imaging and localized proton spectroscopy of the precentral gyrus in amyotrophic lateral sclerosis (2000) AJNR Am J Neuroradiol, 21 (4), pp. 647-658
Kwan, J.Y., Jeong, S.Y., Van Gelderen, P., Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: Correlating 7 Tesla MRI and pathology (2012) PLoS ONE, 7 (4), p. 35241
Oba, H., Araki, T., Ohtomo, K., Amyotrophic lateral sclerosis: T2 shortening in motor cortex at MR imaging (1993) Radiology, 189 (3), pp. 843-846
Gredal, O., Rosenbaum, S., Topp, S., Karlsborg, M., Strange, P., Werdelin, L., Quantification of brain metabolites in amyotrophic lateral sclerosis by localized proton magnetic resonance spectroscopy (1997) Neurology, 48 (4), pp. 878-881
Mitsumoto, H., Ulug, A.M., Pullman, S.L., Quantitative objective markers for upper and lower motor neuron dysfunction in ALS (2007) Neurology, 68 (17), pp. 1402-1410
Pioro, E.P., Antel, J.P., Cashman, N.R., Arnold, D.L., Detection of cortical neuron loss in motor neuron disease by proton magnetic resonance spectroscopic imaging in vivo (1994) Neurology, 44 (10), pp. 1933-1938
Kalra, S., Hanstock, C.C., Martin, W.R., Allen, P.S., Johnston, W.S., Detection of cerebral degeneration in amyotrophic lateral sclerosis using high-field magnetic resonance spectroscopy (2006) Arch Neurol, 63 (8), pp. 1144-1148
Stagg, C.J., Knight, S., Talbot, K., Jenkinson, M., Maudsley, A.A., Turner, M.R., Whole-brain magnetic resonance spectroscopic imaging measures are related to disability in ALS (2013) Neurology, 80 (7), pp. 610-615
Turner, M.R., Kiernan, M.C., Leigh, P.N., Talbot, K., Biomarkers in amyotrophic lateral sclerosis (2009) Lancet Neurol, 8 (1), pp. 94-109
Bede, P., Hardiman, O., Lessons of ALS imaging: Pitfalls and future directions - A critical review (2014) Neuroimage Clin, 4, pp. 436-443
Sarchielli, P., Pelliccioli, G.P., Tarducci, R., Magnetic resonance imaging and 1H-magnetic resonance spectroscopy in amyotrophic lateral sclerosis (2001) Neuroradiology, 43 (3), pp. 189-197
The Amyotrophic Lateral Sclerosis Functional Rating Scale, Assessment of activities of daily living in patients with amyotrophic lateral sclerosis. The ALS CNTF treatment study (ACTS) phase I-II Study Group (1996) Arch Neurol, 53 (2), pp. 141-147
Filippini, N., Douaud, G., Mackay, C.E., Knight, S., Talbot, K., Turner, M.R., Corpus callosum involvement is a consistent feature of amyotrophic lateral sclerosis (2010) Neurology, 75 (18), pp. 1645-1652
Charles, H.C., Lazeyras, F., Krishnan, K.R., Proton spectroscopy of human brain: Effects of age and sex (1994) Prog Neuropsychopharmacol Biol Psychiatry, 18 (6), pp. 995-1004
Imon, Y., Yamaguchi, S., Katayama, S., A decrease in cerebral cortex intensity on T2-weighted with ageing images of normal subjects (1998) Neuroradiology, 40 (2), pp. 76-80
Ngai, S., Tang, Y.M., Du, L., Stuckey, S., Hyperintensity of the precentral gyral subcortical white matter and hypointensity of the precentral gyrus on fluid-attenuated inversion recovery: Variation with age and implications for the diagnosis of amyotrophic lateral sclerosis (2007) AJNR Am J Neuroradiol, 28 (2), pp. 250-254
Kato, S., Shaw, P., Wood-Allum, C., Leigh, P., Shaw, C., Amyotrophic lateral sclerosis (2003) Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders., pp. 350-371. , W. Dickson, ISN Neuropath Press Basel, Switzerland
Agosta, F., Chio, A., Cosottini, M., The present and the future of neuroimaging in amyotrophic lateral sclerosis (2010) AJNR Am J Neuroradiol, 31 (10), pp. 1769-1777
Satoh, J.I., Tokumoto, H., Kurohara, K., Adult-onset Krabbe disease with homozygous T1853C mutation in the galactocerebrosidase gene: Unusual MRI findings of corticospinal tract demyelination (1997) Neurology, 49 (5), pp. 1392-1399
Teriitehau, C., Adamsbaum, C., Merzoug, V., Kalifa, G., Tourbah, A., Aubourg, P., Subtle brain abnormalities in adrenomyeloneuropathy (2007) J Radiol, 88 (7-8), pp. 957-961
Waragai, M., MRI and clinical features in amyotrophic lateral sclerosis (1997) Neuroradiology, 39 (12), pp. 847-851
Rule, R.R., Suhy, J., Schuff, N., Gelinas, D.F., Miller, R.G., Weiner, M.W., Reduced NAA in motor and non-motor brain regions in amyotrophic lateral sclerosis: A cross-sectional and longitudinal study (2004) Amyotroph Lateral Scler Other Motor Neuron Disord, 5 (3), pp. 141-149
Ellis, C.M., Simmons, A., Andrews, C., Dawson, J.M., Williams, S.C., Leigh, P.N., A proton magnetic resonance spectroscopic study in ALS: Correlation with clinical findings (1998) Neurology, 51 (4), pp. 1104-1109
Carew, J.D., Nair, G., Andersen, P.M., Presymptomatic spinal cord neurometabolic findings in SOD1-positive people at risk for familial ALS (2011) Neurology, 77 (14), pp. 1370-1375
Han, J., Ma, L., Study of the features of proton MR spectroscopy ((1)H-MRS) on amyotrophic lateral sclerosis (2010) J Magn Reson Imaging, 31 (2), pp. 305-308
Senda, J., Ito, M., Watanabe, H., Correlation between pyramidal tract degeneration and widespread white matter involvement in amyotrophic lateral sclerosis: A study with tractography and diffusion-tensor imaging (2009) Amyotroph Lateral Scler, 10 (56), pp. 288-294
Cirillo, M., Esposito, F., Tedeschi, G., Widespread microstructural white matter involvement in amyotrophic lateral sclerosis: A whole-brain DTI study (2012) AJNR Am J Neuroradiol, 33 (6), pp. 1102-1108
Nair, G., Carew, J.D., Usher, S., Lu, D., Hu, X.P., Benatar, M., Diffusion tensor imaging reveals regional differences in the cervical spinal cord in amyotrophic lateral sclerosis (2010) Neuroimage, 53 (2), pp. 576-583
Cosottini, M., Pesaresi, I., Piazza, S., Magnetization transfer imaging demonstrates a distributed pattern of microstructural changes of the cerebral cortex in amyotrophic lateral sclerosis (2011) AJNR Am J Neuroradiol, 32 (4), pp. 704-708
Foerster, B.R., Dwamena, B.A., Petrou, M., Carlos, R.C., Callaghan, B.C., Pomper, M.G., Diagnostic accuracy using diffusion tensor imaging in the diagnosis of ALS: A meta-analysis (2012) Acad Radiol, 19 (9), pp. 1075-1086
Hecht, M. J., Fellner, F., Fellner, C., Hilz, M. J., Heuss, D., Neundorfer, B., MRI-FLAIR images of the head show corticospinal tract alterations in ALS patients more frequently than T2-, T1- and proton-density-weighted images (2001) J Neurol Sci, 186 (1-2), pp. 37-44
Bowen, B. C., Pattany, P. M., Bradley, W. G., MR imaging and localized proton spectroscopy of the precentral gyrus in amyotrophic lateral sclerosis (2000) AJNR Am J Neuroradiol, 21 (4), pp. 647-658
Kwan, J. Y., Jeong, S. Y., Van Gelderen, P., Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: Correlating 7 Tesla MRI and pathology (2012) PLoS ONE, 7 (4), p. 35241
Pioro, E. P., Antel, J. P., Cashman, N. R., Arnold, D. L., Detection of cortical neuron loss in motor neuron disease by proton magnetic resonance spectroscopic imaging in vivo (1994) Neurology, 44 (10), pp. 1933-1938
Stagg, C. J., Knight, S., Talbot, K., Jenkinson, M., Maudsley, A. A., Turner, M. R., Whole-brain magnetic resonance spectroscopic imaging measures are related to disability in ALS (2013) Neurology, 80 (7), pp. 610-615
Turner, M. R., Kiernan, M. C., Leigh, P. N., Talbot, K., Biomarkers in amyotrophic lateral sclerosis (2009) Lancet Neurol, 8 (1), pp. 94-109
Charles, H. C., Lazeyras, F., Krishnan, K. R., Proton spectroscopy of human brain: Effects of age and sex (1994) Prog Neuropsychopharmacol Biol Psychiatry, 18 (6), pp. 995-1004
Ngai, S., Tang, Y. M., Du, L., Stuckey, S., Hyperintensity of the precentral gyral subcortical white matter and hypointensity of the precentral gyrus on fluid-attenuated inversion recovery: Variation with age and implications for the diagnosis of amyotrophic lateral sclerosis (2007) AJNR Am J Neuroradiol, 28 (2), pp. 250-254
Satoh, J. I., Tokumoto, H., Kurohara, K., Adult-onset Krabbe disease with homozygous T1853C mutation in the galactocerebrosidase gene: Unusual MRI findings of corticospinal tract demyelination (1997) Neurology, 49 (5), pp. 1392-1399
Rule, R. R., Suhy, J., Schuff, N., Gelinas, D. F., Miller, R. G., Weiner, M. W., Reduced NAA in motor and non-motor brain regions in amyotrophic lateral sclerosis: A cross-sectional and longitudinal study (2004) Amyotroph Lateral Scler Other Motor Neuron Disord, 5 (3), pp. 141-149
Ellis, C. M., Simmons, A., Andrews, C., Dawson, J. M., Williams, S. C., Leigh, P. N., A proton magnetic resonance spectroscopic study in ALS: Correlation with clinical findings (1998) Neurology, 51 (4), pp. 1104-1109
Carew, J. D., Nair, G., Andersen, P. M., Presymptomatic spinal cord neurometabolic findings in SOD1-positive people at risk for familial ALS (2011) Neurology, 77 (14), pp. 1370-1375
Foerster, B. R., Dwamena, B. A., Petrou, M., Carlos, R. C., Callaghan, B. C., Pomper, M. G., Diagnostic accuracy using diffusion tensor imaging in the diagnosis of ALS: A meta-analysis (2012) Acad Radiol, 19 (9), pp. 1075-1086
The combined use of conventional MRI and MR spectroscopic imaging increases the diagnostic accuracy in amyotrophic lateral sclerosis
Purpose: We aimed to assess, in amyotrophic lateral sclerosis (ALS), the diagnostic accuracy of the combined use of conventional MRI signal changes (namely, hypointensity of the precentral cortex and hyperintensity of the corticospinal tracts on T2-weighted images), and N-Acetyl-Aspartate (NAA) reduction in the motor cortex at Magnetic Resonance Spectroscopy (MRS), which are affected by limited diagnostic accuracy when used separately. Methods: T2-hypointensity and NAA/(Choline + Creatine) ratio of the precentral gyrus and T2-hyperintensity of the corticospinal tracts were measured in 84 ALS patients and 28 healthy controls, using a Region-of-Interest approach. Sensitivity and specificity values were calculated using Fisher stepwise discriminant analysis, and cross-validated using the leave-one-out method. Results: Precentral gyrus T2 signal intensity (p < 10(-4)) and NAA peak (p < 10(-6)) were significantly reduced in patients, and their values did not correlate significantly to each other both in patients and controls, while no significant differences were obtained in terms of T2-hyperintensity of the corticospinal tract. Sensitivity and specificity of the two discriminant variables, taken alone, were 71.4% and 75.0%, for NAA peak, and 63.1% and 71.4% for T2-hypointensity, respectively. When using these two variables in combination, a significant increase in sensitivity (78.6%) and specificity (82.1%) was achieved. Conclusions: Precentral gyrus T2-hypointensity and NAA peak are not significantly correlated in ALS patients, suggesting that they reflect relatively independent phenomena. The combined use of these measures improves the diagnostic accuracy of MRI in ALS diagnosis. (C) 2014 Elsevier Ireland Ltd. All rights reserved.
The combined use of conventional MRI and MR spectroscopic imaging increases the diagnostic accuracy in amyotrophic lateral sclerosis