Receptor binding peptides for target-selective delivery of nanoparticles encapsulated drugs(707 views) Accardo A, Aloj L, Aurilio M, Morelli G, Tesauro D
Int J Nanomed (ISSN: 1178-2013, 1176-9114, 1176-9114linking), 2014 Mar 27; 9(1): 1537-1557.
Centro interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPeB), Department of Pharmacy, Istituto di Biostrutture e Bioimmagini - Consiglio Nazionale delle Ricerche (IBB CNR), University of Naples 'Federico II', Napoli, Italy
Department of Nuclear Medicine, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione 'G. Pascale', Napoli, Italy
References: Richardson, P.F., Nanotechnology therapeutics in oncology-recent Developments and future outlook (2012) Annu Rep Med Chem., 47, pp. 239-25
Levchenko, T.S., Hartner, W.C., Torchilin, V.P., Liposomes for cardiovascular targeting (2012) Ther Deliv., 3 (4), pp. 501-514
Maradana, M.R., Thomas, R., O'Sullivan, B.J., Targeted delivery of curcumin for treating type 2 diabetes (2013) Mol Nutr Food Res., 57 (9), pp. 1550-1556
Levesque, J.P., Winkler, I.G., It takes nerves to recover from chemotherapy (2013) Nat Med., 19 (6), pp. 669-671
Matsumura, Y., Maeda, H., A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs (1986) Cancer Res., 46 (12 PART 1), pp. 6387-6392
Salmaso, S., Caliceti, P., Stealth properties to improve therapeutic efficacy of drug nanocarriers (2013) J Drug Deliv., 2013, pp. 1-19
Gabizon, A.A., Liposome circulation time and tumor targeting: Implications for cancer chemotherapy (1995) Adv Drug Deliv Rev., 16, pp. 285-294
Aliabadi, H.M., Shahin, M., Brocks, D.R., Lavasanifar, A., Disposition of drugs in block copolymer micelle delivery systems: From discovery to recovery (2008) Clin Pharmacokinet., 47 (10), pp. 619-634
Kwon, G.S., Kataoka, K., Block copolymer micelles as long-circulating drug vehicles (1995) Adv Drug Delivery Rev., 16, pp. 295-309
Shin, H.C., Alani, A.W., Rao, D.A., Rockich, N.C., Kwon, G.S., Multi-drug loaded polymeric micelles for simultaneous delivery of poorly soluble anticancer drugs (2009) J Control Release., 140 (3), pp. 294-300
Kim, S.C., Kim, D.W., Shim, Y.H., In vivo evaluation of polymeric micellar paclitaxel formulation: Toxicity and efficacy (2001) J Control Release., 72 (1-3), pp. 191-202
Torchilin, V.P., Structure and design of polymeric surfactant-based drug delivery systems (2001) Control Release., 73 (2-3), pp. 137-172
Kataoka, K., Kwon, G.S., Yokoyama, M., Okano, T., Sakurai, Y., Block copolymer micelles as vehicles for drug delivery (1993) J Control Release., 24, pp. 119-132
Kataoka, K., Matsumoto, T., Yokoyama, M., Doxorubicin-loaded poly(ethylene glycol)-poly(beta-benzyl-L-aspartate) copolymer micelles: Their pharmaceutical characteristics and biological significance (2000) J Control Release., 64, pp. 143-153
Torchilin, V.P., Trubetskoy, V.S., Whiteman, K.R., Caliceti, P., Ferruti, P., Veronese, F.M., New synthetic amphiphilic polymers for steric protection of liposomes in vivo (1995) J Pharm Sci., 84 (9), pp. 1049-1053
Johnson, S.D., Anderson, J.M., Marchant, R.E., Biocompatibility studies on plasma polymerized interface materials encompassing both hydrophobic and hydrophilic surfaces (1992) Biomed Mater Res., 26 (7), pp. 915-935
Benahmed, A., Ranger, M., Leroux, J.C., Novel polymeric micelles based on the amphiphilic diblock copolymer poly(N-vinyl-2-pyrrolidone)-block-poly(D, L-lactide) (2001) Pharm Res., 18 (3), pp. 323-328
Luppi, B., Cerchiara, T., Bigucci, F., Di Pietra, A.M., Orienti, I., Zecchi, V., Crosslinked poly(methyl vinyl ether-co-maleic anhydride) as topical vehicles for hydrophilic and lipophilic drugs (2003) Drug Deliv., 10 (4), pp. 239-244
Luppi, B., Bigucci, F., Cerchiara, T., Micelles based on polyvinyl alcohol substituted with oleic acid for targeting of lipophilic drugs (2005) Drug Deliv., 12 (1), pp. 21-26
Bangham, A.D., Horne, R.W., Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope (1964) J Mol Biol., 8, pp. 660-668
Klibanov, A.L., Maruyama, K., Torchilin, V.P., Huang, L., Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes (1990) FEBS Lett., 268 (1), pp. 235-237
Krown, S.E., Northfelt, D.W., Osoba, D., Stewart, J.S., Use of liposomal anthracyclines in Kaposi's sarcoma (2004) Semin Oncol., 31 (6 SUPPL. 13), pp. 36-52
Rose, P.G., Pegylated liposomal doxorubicin: Optimizing the dosing schedule in ovarian cancer (2005) Oncologist., 10 (3), pp. 205-214
Lehár, J., Krueger, A.S., Avery, W., Synergistic drug combinations tend to improve therapeutically relevant selectivity (2009) Nat Biotechnol., 27 (7), pp. 659-666
Wang, H., Zhao, Y., Wu, Y., Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles (2011) Biomaterials., 32 (32), pp. 8281-8290
Duan, J., Mansour, H.M., Zhang, Y., Reversion of multidrug resistance by co-encapsulation of doxorubicin and curcumin in chitosan/poly(butyl cyanoacrylate) nanoparticles (2012) Int J Pharm., 426 (1-2), pp. 193-201
Zhang, L., Gu, F.X., Chan, J.M., Wang, A.Z., Langer, R.S., Farokhzad, O.C., Nanoparticles in medicine: Therapeutic applications and developments (2008) Clin Pharmacol Ther., 83 (5), pp. 761-769
Jordan, A., Scholz, R., Maier-Hauff, K., The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma (2006) J Neurooncol., 78 (1), pp. 7-14
Frimpong, R.A., Hilt, J.Z., Magnetic nanoparticles in biomedicine: Synthesis, functionalization and applications (2010) Nanomedicine (Lond)., 5 (9), pp. 1401-1414
Jabr-Milane, L.S., van Vlerken, L.E., Yadav, S., Amiji, M.M., Multi-functional nanocarriers to overcome tumor drug resistance (2008) Cancer Treat Rev., 34 (7), pp. 592-602
Kievit, F.M., Wang, F.Y., Fang, C., Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro (2011) J Control Release., 152 (1), pp. 76-83
Roy, I., Ohulchanskyy, T.Y., Pudavar, H.E., Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: A novel drug-carrier system for photodynamic therapy (2003) J Am Chem Soc., 125 (26), pp. 7860-7865
Xiong, X.B., Huang, Y., Lu, W.L., Enhanced intracellular delivery and improved antitumor efficacy of doxorubicin by sterically stabilized liposomes modified with a synthetic RGD mimetic (2005) Control Release., 107 (2), pp. 262-275
Witzig, T.E., Yttrium-90-ibritumomab tiuxetan radioimmunotherapy: A new treatment approach for B-cell non-Hodgkin's lymphoma (2004) Drugs Today (Barc)., 40 (2), pp. 111-119
Foss, F.M., DAB(389)IL-2 (ONTAK): A novel fusion toxin therapy for lymphoma (2000) Clin Lymphoma., 1 (2), pp. 110-116. , discussion 117
Mårlind, J., Kaspar, M., Trachsel, E., Antibody-mediated delivery of interleukin-2 to the stroma of breast cancer strongly enhances the potency of chemotherapy (2008) Clin Cancer Res., 14 (20), pp. 6515-6524
Wiseman, G.A., White, C.A., Witzig, T.E., Radioimmunotherapy of relapsed non-Hodgkin's lymphoma with zevalin, a 90Y-labeled anti-CD20 monoclonal antibody (1999) Clin Cancer Res., 5 (SUPPL. 10), pp. 3281s-3286s
Hilgenbrink, A.R., Low, P.S., Folate receptor-mediated drug targeting: From therapeutics to diagnostics (2005) Pharm Sci., 94 (10), pp. 2135-2146
Choi, C.H., Alabi, C.A., Webster, P., Davis, M.E., Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles (2010) Proc Natl Acad Sci U S A, 107 (3), pp. 1235-1240
Reubi, J.C., Peptide receptors as molecular targets for cancer diagnosis and therapy (2003) Endocr Rev., 24 (4), pp. 389-427
Ginj, M., Zhang, H., Waser, B., Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors (2006) Proc Natl Acad Sci U S A, 103 (44), pp. 16436-16441
Chan, K.Y., Vermeersch, S., de Hoon, J., Villalón, C.M., Maassenvandenbrink, A., Potential mechanisms of prospective antimigraine drugs: A focus on vascular (side) effects (2011) Pharmacol Ther., 129 (3), pp. 332-351
Allen, F.H., Pitchford, N.A., Conformational analysis from crystallographic data (1998) Structure Based Drug Design., pp. 15-26. , In: Codding PW editors. The Netherlands
The Netherlands Kluwer Academic Publishers
Pande, J., Szewczyk, M.M., Grover, A.K., Phage display: Concept, innovations, applications and future (2010) Biotechnol Adv., 28 (6), pp. 849-858
Feldborg, L.N., Jølck, R.I., Andresen, T.L., Quantitative evaluation of bioorthogonal chemistries for surface functionalization of nanoparticles (2012) Bioconjug Chem., 23 (12), pp. 2444-2450
Danhier, F., Le Breton, A., Préat, V., RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis (2012) Mol Pharm., 9 (11), pp. 2961-2973
Binétruy-Tournaire, R., Demangel, C., Malavaud, B., Identification of a peptide blocking vascular endothelial growth factor (VEGF)-mediated angiogenesis (2000) EMBO J., 19 (7), pp. 1525-1533
Katanasaka, Y., Ishii, T., Asai, T., Cancer antineovascular therapy with liposome drug delivery systems targeted to BiP/GRP78 (2010) Int J Cancer., 127 (11), pp. 2685-2698
Li, Y., Foss, C.A., Summerfield, D.D., Targeting collagen strands by photo-triggered triple-helix hybridization (2012) Proc Natl Acad Sci U S A, 109 (37), pp. 14767-14772
Rothenfluh, D.A., Bermudez, H., O'Neil, C.P., Hubbell, J.A., Biofunctional polymer nanoparticles for intra-articular targeting and retention in cartilage (2008) Nat Mater., 7 (3), pp. 248-254
Chen, Y., Photo-affinity labeling strategy to study the binding site of G protein-coupled receptors (2011) Front Chem China., 6 (3), pp. 200-205
Zhang, Y., Xie, Z., Wang, L., Mutagenesis and computer modeling studies of a GPCR conserved residue W5.43(194) in ligand recognition and signal transduction for CB2 receptor (2011) Int Immunopharmacol., 11 (9), pp. 1303-1310
Guiellemin, R., Peptides in the brain: The new endocrinology of the neurons (1978) Science., 202, pp. 390-402
Lamberts, S.W., (1999) Octreotide: The next decade., , Bristol UK: BioScientifica
Melacini, G., Zhu, Q., Goodman, M., Multiconformational NMR analysis of sandostatin (octreotide): Equilibrium between beta-sheet and partially helical structures (1997) Biochemistry., 36 (6), pp. 1233-1241
de Jong, M., Breeman, W.A., Kwekkeboom, D.J., Valkema, R., Krenning, E.P., Tumor imaging and therapy using radiolabeled somatostatin analogues (2009) Acc Chem Res., 42 (7), pp. 873-880
Okarvi, S.M., Peptide-based radiopharmaceuticals and cytotoxic conjugates: Potential tools against cancer (2008) Cancer Treat Rev., 34 (1), pp. 13-26
Barragán, F., Carrion-Salip, D., Gómez-Pinto, I., Somatostatin subtype-2 receptor-targeted metal-based anticancer complexes (2012) Bioconjug Chem., 23 (9), pp. 1838-1855
Morisco, A., Accardo, A., Gianolio, E., Tesauro, D., Benedetti, E., Morelli, G., Micelles derivatized with octreotide as potential target-selective contrast agents in MRI (2009) J Pept Sci., 15 (3), pp. 242-250
Accardo, A., Morisco, A., Gianolio, E., Nanoparticles containing octreotide peptides and gadolinium complexes for MRI applications (2011) J Pept Sci., 17 (2), pp. 154-162
Helbok, A., Rangger, C., von Guggenberg, E., Targeting properties of peptide-modified radiolabeled liposomal nanoparticles (2012) Nanomedicine., 8 (1), pp. 112-118
Petersen, A.L., Binderup, T., Jølck, R.I., Positron emission tomography evaluation of somatostatin receptor targeted 64Cu-TATE-liposomes in a human neuroendocrine carcinoma mouse model (2012) J Control Release., 160 (2), pp. 254-263
Zhang, Y., Zhang, H., Wang, X., Wang, J., Zhang, X., Zhang, Q., The eradication of breast cancer and cancer stem cells using octreotide modified paclitaxel active targeting micelles and salinomycin passive targeting micelles (2012) Biomaterials., 33 (2), pp. 679-691
Zhou, J.J., Liu, J., Xu, B., Relationship between lactone ring forms of HCPT and their antitumor activities (2001) Acta Pharmacol Sin., 22 (9), pp. 827-830
Su, Z., Shi, Y., Xiao, Y., Effect of octreotide surface density on receptor-mediated endocytosis in vitro and anticancer efficacy of modified nanocarrier in vivo after optimization (2013) Int J Pharm., 447 (1-2), pp. 281-292
Su, Z., Niu, J., Xiao, Y., Effect of octreotide-polyethylene glycol(100) monostearate modification on the pharmacokinetics and cellular uptake of nanostructured lipid carrier loaded with hydroxycamptothecine (2011) Mol Pharm., 8 (5), pp. 1641-1651
Strock, C.J., Park, J.I., Rosen, D.M., Activity of irinotecan and the tyrosine kinase inhibitor CEP-751 in medullary thyroid cancer (2006) J Clin Endocrinol Metab., 91 (1), pp. 79-84
Iwase, Y., Maitani, Y., Octreotide-targeted liposomes loaded with CPT-11 enhanced cytotoxicity for the treatment of medullary thyroid carcinoma (2011) Mol Pharm., 8 (2), pp. 330-337
Liu, Y., Sun, J., Zhang, P., He, Z., Amphiphilic polysaccharide-hydrophobicized graft polymeric micelles for drug delivery nanosystems (2011) Curr Med Chem., 18 (17), pp. 2638-2648
Zou, A., Huo, M., Zhang, Y., Octreotide-modified N-octyl-O, N-carboxymethyl chitosan micelles as potential carriers for targeted antitumor drug delivery (2012) J Pharm Sci., 101 (2), pp. 627-640
Zou, A., Chen, Y., Huo, M., In vivo studies of octreotide-modified N-octyl-O, N-carboxymethyl chitosan micelles loaded with doxorubicin for tumor-targeted delivery (2013) J Pharm Sci., 102 (1), pp. 126-135
Huo, M., Zou, A., Yao, C., Somatostatin receptor-mediated tumor-targeting drug delivery using octreotide-PEG-deoxycholic acid conjugate-modified N-deoxycholic acid-O, N-hydroxyethylation chitosan micelles (2012) Biomaterials., 33 (27), pp. 6393-6407
Sun, M., Wang, Y., Shen, J., Xiao, Y., Su, Z., Ping, Q., Octreotide-modification enhances the delivery and targeting of doxorubicin-loaded liposomes to somatostatin receptors expressing tumor in vitro and in vivo (2010) Nanotechnology., 21 (47), p. 475101
Zhang, J., Jin, W., Wang, X., Wang, J., Zhang, X., Zhang, Q., A novel octreotide modified lipid vesicle improved the anticancer efficacy of doxorubicin in somatostatin receptor 2 positive tumor models (2010) Mol Pharm., 7 (4), pp. 1159-1168
Accardo, A., Mangiapia, G., Paduano, L., Morelli, G., Tesauro, D., Octreotide labeled aggregates containing platinum complexes as nanovectors for drug delivery (2013) J Pept Sci., 19 (4), pp. 190-197
Dai, W., Jin, W., Zhang, J., Spatiotemporally controlled co-delivery of anti-vasculature agent and cytotoxic drug by octreotide-modified stealth liposomes (2012) Pharm Res., 29 (10), pp. 2902-2911
De Jong, W.H., Borm, P.J., Drug delivery and nanoparticles: Applications and hazards (2008) Int J Nanomedicine., 3 (2), pp. 133-149
Surujpaul, P.P., Gutiérrez-Wing, C., Ocampo-García, B., Gold nanoparticles conjugated to [Tyr3]octreotide peptide (2008) Biophys Chem., 138 (3), pp. 83-90
Mendoza-Nava, H., Ferro-Flores, G., Ocampo-García, B., Laser heating of gold nanospheres functionalized with octreotide: In vitro effect on HeLa cell viability (2013) Photomed Laser Surg., 31 (1), pp. 17-22
Walsh, J.H., Gastrin (1994) Gut peptides: Biochemistry and Physiology., pp. 75-121. , In: Walsh JH, Dockray GJ, editors. New York: Raven Press, Ltd
Wank, S.A., Pisegna, J.R., de Weerth, A., Brain and gastrointestinal cholecystokinin receptor family: Structure and functional expression (1992) Proc Natl Acad Sci U S A, 89 (18), pp. 8691-8695
Aloj, L., Aurilio, M., Rinaldi, V., Comparison of the binding and internalization properties of 12 DOTA-coupled and 111In-labelled CCK2/gastrin receptor binding peptides: A collaborative project under COST Action BM0607 (2011) Eur J Nucl Med Mol Imaging., 38 (8), pp. 1417-1425
Pellegrini, M., Mierke, D.F., Molecular complex of cholecystokinin-8 and N-terminus of the cholecystokinin A receptor by NMR spectroscopy (1999) Biochemistry., 38 (45), pp. 14775-14783
Morelli, G., De Luca, S., Tesauro, D., CCK8 peptide derivatized with diphenylphosphine for rhenium labelling: Synthesis and molecular mechanics calculations (2002) J Pept Sci., 8 (7), pp. 373-381
Vaccaro, M., Mangiapia, G., Paduano, L., Structural and relaxometric characterization of peptide aggregates containing gadolinium complexes as potential selective contrast agents in MRI (2007) Chemphyschem., 8 (17), pp. 2526-2538
Accardo, A., Tesauro, D., Aloj, L., Peptide-containing aggregates as selective nanocarriers for therapeutics (2008) ChemMedChem., 3 (4), pp. 594-602
Cuttitta, F., Carney, D.N., Mulshine, J., Bombesin-like peptides can function as autocrine growth factors in human small-cell lung cancer (1985) Nature., 316 (6031), pp. 823-826
Patel, O., Shulkes, A., Baldwin, G.S., Gastrin-releasing peptide and cancer (2006) Biochim Biophys Acta., 1766 (1), pp. 23-41
Bunnett, G., Gastrin-releasing peptide (1994) Gut Peptides: Biochemistry and Physiology., pp. 423-445. , In: Walsh JH, Dockray GJ, editors. New York: Raven Press, Ltd
Smith, C.J., Volkert, W.A., Hoffman, T.J., Radiolabeled peptide conjugates for targeting of the bombesin receptor superfamily subtypes (2005) Nucl Med Biol., 32 (7), pp. 733-740
Parry, J.J., Kelly, T.S., Andrews, R., Rogers, B.E., In vitro and in vivo evaluation of 64Cu-labeled DOTA-linker-bombesin(7-14) analogues containing different amino acid linker moieties (2007) Bioconjug Chem., 18 (4), pp. 1110-1117
Martin, A.L., Hickey, J.L., Ablack, A.L., Lewis, J.D., Luyt, L.G., Gillies, E.R., Synthesis of bombesin-functionalized iron oxide nanoparticles and their specific uptake in prostate cancer cells (2009) J Nanopart Res., 12 (5), pp. 1599-1608
Accardo, A., Mansi, R., Morisco, A., Peptide modified nanocarriers for selective targeting of bombesin receptors (2010) Mol Biosyst., 6 (5), pp. 878-887
Accardo, A., Salsano, G., Morisco, A., Peptide-modified liposomes for selective targeting of bombesin receptors overexpressed by cancer cells: A potential theranostic agent (2012) J Nanomedicine., 7, pp. 2007-2017
Mansi, R., Wang, X., Forrer, F., Evaluation of a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-conjugated bombesin-based radioantagonist for the labeling with single-photon emission computed tomography, positron emission tomography, and therapeutic radionuclides (2009) Int Clin Cancer Res., 15 (16), pp. 5240-5249
Zharov, V.P., Galitovskaya, E.N., Johnson, C., Kelly, T., Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: Potential for cancer therapy (2005) Lasers Surg Med., 37 (3), pp. 219-226
Chanda, N., Kattumuri, V., Shukla, R., Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity (2010) Proc Natl Acad Sci U S A, 107 (19), pp. 8760-8765
Hosta-Rigau, L., Olmedo, I., Arbiol, J., Cruz, L.J., Kogan, M.J., Albericio, F., Multifunctionalized gold nanoparticles with peptides targeted to gastrin-releasing peptide receptor of a tumor cell line (2010) Bioconjug Chem., 21 (6), pp. 1070-1078
Dasgupta, P., Sun, J., Wang, S., Disruption of the Rb-Raf-1 interaction inhibits tumor growth and angiogenesis (2004) Mol Cell Biol., 24 (21), pp. 9527-9541
Nagy, A., Schally, A.V., Targeting of cytotoxic luteinizing hormone-releasing hormone analogs to breast, ovarian, endometrial, and prostate cancers (2005) Biol Reprod., 73 (5), pp. 851-859
He, Y., Zhang, L., Song, C., Luteinizing hormone-releasing hormone receptor-mediated delivery of mitoxantrone using LHRH analogs modified with PEGylated liposomes (2010) Int J Nanomedicine., 5, pp. 697-705
Hermey, G., The Vps10p-domain receptor family (2009) Cell Mol Life Sci., 66 (16), pp. 2677-2689
Falciani, C., Fabbrini, M., Pini, A., Synthesis and biological activity of stable branched neurotensin peptides for tumor targeting (2007) Mol Cancer Ther., 6 (9), pp. 2441-2448
Falciani, C., Accardo, A., Brunetti, J., Target-selective drug delivery through liposomes labeled with oligobranched neurotensin peptides (2011) ChemMedChem., 6 (4), pp. 678-685
Richardson, P. F., Nanotechnology therapeutics in oncology-recent Developments and future outlook (2012) Annu Rep Med Chem., 47, pp. 239-25
Levchenko, T. S., Hartner, W. C., Torchilin, V. P., Liposomes for cardiovascular targeting (2012) Ther Deliv., 3 (4), pp. 501-514
Maradana, M. R., Thomas, R., O'Sullivan, B. J., Targeted delivery of curcumin for treating type 2 diabetes (2013) Mol Nutr Food Res., 57 (9), pp. 1550-1556
Levesque, J. P., Winkler, I. G., It takes nerves to recover from chemotherapy (2013) Nat Med., 19 (6), pp. 669-671
Gabizon, A. A., Liposome circulation time and tumor targeting: Implications for cancer chemotherapy (1995) Adv Drug Deliv Rev., 16, pp. 285-294
Aliabadi, H. M., Shahin, M., Brocks, D. R., Lavasanifar, A., Disposition of drugs in block copolymer micelle delivery systems: From discovery to recovery (2008) Clin Pharmacokinet., 47 (10), pp. 619-634
Kwon, G. S., Kataoka, K., Block copolymer micelles as long-circulating drug vehicles (1995) Adv Drug Delivery Rev., 16, pp. 295-309
Shin, H. C., Alani, A. W., Rao, D. A., Rockich, N. C., Kwon, G. S., Multi-drug loaded polymeric micelles for simultaneous delivery of poorly soluble anticancer drugs (2009) J Control Release., 140 (3), pp. 294-300
Kim, S. C., Kim, D. W., Shim, Y. H., In vivo evaluation of polymeric micellar paclitaxel formulation: Toxicity and efficacy (2001) J Control Release., 72 (1-3), pp. 191-202
Torchilin, V. P., Structure and design of polymeric surfactant-based drug delivery systems (2001) Control Release., 73 (2-3), pp. 137-172
Torchilin, V. P., Micellar nanocarriers: Pharmaceutical perspectives (2007) Pharm Res., 24 (1), pp. 1-16
Torchilin, V. P., Trubetskoy, V. S., Whiteman, K. R., Caliceti, P., Ferruti, P., Veronese, F. M., New synthetic amphiphilic polymers for steric protection of liposomes in vivo (1995) J Pharm Sci., 84 (9), pp. 1049-1053
Johnson, S. D., Anderson, J. M., Marchant, R. E., Biocompatibility studies on plasma polymerized interface materials encompassing both hydrophobic and hydrophilic surfaces (1992) Biomed Mater Res., 26 (7), pp. 915-935
Bangham, A. D., Horne, R. W., Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope (1964) J Mol Biol., 8, pp. 660-668
Klibanov, A. L., Maruyama, K., Torchilin, V. P., Huang, L., Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes (1990) FEBS Lett., 268 (1), pp. 235-237
Krown, S. E., Northfelt, D. W., Osoba, D., Stewart, J. S., Use of liposomal anthracyclines in Kaposi's sarcoma (2004) Semin Oncol., 31 (6 SUPPL. 13), pp. 36-52
Rose, P. G., Pegylated liposomal doxorubicin: Optimizing the dosing schedule in ovarian cancer (2005) Oncologist., 10 (3), pp. 205-214
Leh r, J., Krueger, A. S., Avery, W., Synergistic drug combinations tend to improve therapeutically relevant selectivity (2009) Nat Biotechnol., 27 (7), pp. 659-666
Zhang, L., Gu, F. X., Chan, J. M., Wang, A. Z., Langer, R. S., Farokhzad, O. C., Nanoparticles in medicine: Therapeutic applications and developments (2008) Clin Pharmacol Ther., 83 (5), pp. 761-769
Frimpong, R. A., Hilt, J. Z., Magnetic nanoparticles in biomedicine: Synthesis, functionalization and applications (2010) Nanomedicine (Lond)., 5 (9), pp. 1401-1414
Jabr-Milane, L. S., van Vlerken, L. E., Yadav, S., Amiji, M. M., Multi-functional nanocarriers to overcome tumor drug resistance (2008) Cancer Treat Rev., 34 (7), pp. 592-602
Kievit, F. M., Wang, F. Y., Fang, C., Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro (2011) J Control Release., 152 (1), pp. 76-83
Xiong, X. B., Huang, Y., Lu, W. L., Enhanced intracellular delivery and improved antitumor efficacy of doxorubicin by sterically stabilized liposomes modified with a synthetic RGD mimetic (2005) Control Release., 107 (2), pp. 262-275
Witzig, T. E., Yttrium-90-ibritumomab tiuxetan radioimmunotherapy: A new treatment approach for B-cell non-Hodgkin's lymphoma (2004) Drugs Today (Barc)., 40 (2), pp. 111-119
Foss, F. M., DAB (389) IL-2 (ONTAK): A novel fusion toxin therapy for lymphoma (2000) Clin Lymphoma., 1 (2), pp. 110-116. , discussion 117
M rlind, J., Kaspar, M., Trachsel, E., Antibody-mediated delivery of interleukin-2 to the stroma of breast cancer strongly enhances the potency of chemotherapy (2008) Clin Cancer Res., 14 (20), pp. 6515-6524
Wiseman, G. A., White, C. A., Witzig, T. E., Radioimmunotherapy of relapsed non-Hodgkin's lymphoma with zevalin, a 90Y-labeled anti-CD20 monoclonal antibody (1999) Clin Cancer Res., 5 (SUPPL. 10), pp. 3281s-3286s
Hilgenbrink, A. R., Low, P. S., Folate receptor-mediated drug targeting: From therapeutics to diagnostics (2005) Pharm Sci., 94 (10), pp. 2135-2146
Choi, C. H., Alabi, C. A., Webster, P., Davis, M. E., Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles (2010) Proc Natl Acad Sci U S A, 107 (3), pp. 1235-1240
Reubi, J. C., Peptide receptors as molecular targets for cancer diagnosis and therapy (2003) Endocr Rev., 24 (4), pp. 389-427
Chan, K. Y., Vermeersch, S., de Hoon, J., Villal n, C. M., Maassenvandenbrink, A., Potential mechanisms of prospective antimigraine drugs: A focus on vascular (side) effects (2011) Pharmacol Ther., 129 (3), pp. 332-351
Allen, F. H., Pitchford, N. A., Conformational analysis from crystallographic data (1998) Structure Based Drug Design., pp. 15-26. , In: Codding PW editors. The Netherlands
Feldborg, L. N., J lck, R. I., Andresen, T. L., Quantitative evaluation of bioorthogonal chemistries for surface functionalization of nanoparticles (2012) Bioconjug Chem., 23 (12), pp. 2444-2450
Bin truy-Tournaire, R., Demangel, C., Malavaud, B., Identification of a peptide blocking vascular endothelial growth factor (VEGF) -mediated angiogenesis (2000) EMBO J., 19 (7), pp. 1525-1533
Li, Y., Foss, C. A., Summerfield, D. D., Targeting collagen strands by photo-triggered triple-helix hybridization (2012) Proc Natl Acad Sci U S A, 109 (37), pp. 14767-14772
Rothenfluh, D. A., Bermudez, H., O'Neil, C. P., Hubbell, J. A., Biofunctional polymer nanoparticles for intra-articular targeting and retention in cartilage (2008) Nat Mater., 7 (3), pp. 248-254
Lamberts, S. W., (1999) Octreotide: The next decade., , Bristol UK: BioScientifica
Okarvi, S. M., Peptide-based radiopharmaceuticals and cytotoxic conjugates: Potential tools against cancer (2008) Cancer Treat Rev., 34 (1), pp. 13-26
Barrag n, F., Carrion-Salip, D., G mez-Pinto, I., Somatostatin subtype-2 receptor-targeted metal-based anticancer complexes (2012) Bioconjug Chem., 23 (9), pp. 1838-1855
Petersen, A. L., Binderup, T., J lck, R. I., Positron emission tomography evaluation of somatostatin receptor targeted 64Cu-TATE-liposomes in a human neuroendocrine carcinoma mouse model (2012) J Control Release., 160 (2), pp. 254-263
Zhou, J. J., Liu, J., Xu, B., Relationship between lactone ring forms of HCPT and their antitumor activities (2001) Acta Pharmacol Sin., 22 (9), pp. 827-830
Strock, C. J., Park, J. I., Rosen, D. M., Activity of irinotecan and the tyrosine kinase inhibitor CEP-751 in medullary thyroid cancer (2006) J Clin Endocrinol Metab., 91 (1), pp. 79-84
De Jong, W. H., Borm, P. J., Drug delivery and nanoparticles: Applications and hazards (2008) Int J Nanomedicine., 3 (2), pp. 133-149
Surujpaul, P. P., Guti rrez-Wing, C., Ocampo-Garc a, B., Gold nanoparticles conjugated to [Tyr3] octreotide peptide (2008) Biophys Chem., 138 (3), pp. 83-90
Walsh, J. H., Gastrin (1994) Gut peptides: Biochemistry and Physiology., pp. 75-121. , In: Walsh JH, Dockray GJ, editors. New York: Raven Press, Ltd
Wank, S. A., Pisegna, J. R., de Weerth, A., Brain and gastrointestinal cholecystokinin receptor family: Structure and functional expression (1992) Proc Natl Acad Sci U S A, 89 (18), pp. 8691-8695
Smith, C. J., Volkert, W. A., Hoffman, T. J., Radiolabeled peptide conjugates for targeting of the bombesin receptor superfamily subtypes (2005) Nucl Med Biol., 32 (7), pp. 733-740
Parry, J. J., Kelly, T. S., Andrews, R., Rogers, B. E., In vitro and in vivo evaluation of 64Cu-labeled DOTA-linker-bombesin (7-14) analogues containing different amino acid linker moieties (2007) Bioconjug Chem., 18 (4), pp. 1110-1117
Martin, A. L., Hickey, J. L., Ablack, A. L., Lewis, J. D., Luyt, L. G., Gillies, E. R., Synthesis of bombesin-functionalized iron oxide nanoparticles and their specific uptake in prostate cancer cells (2009) J Nanopart Res., 12 (5), pp. 1599-1608
Zharov, V. P., Galitovskaya, E. N., Johnson, C., Kelly, T., Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: Potential for cancer therapy (2005) Lasers Surg Med., 37 (3), pp. 219-226
Receptor binding peptides for target-selective delivery of nanoparticles encapsulated drugs
Malvindi MA, Greco A, Conversano F, Figuerola A, Corti M, Bonora M, Lascialfari A, Doumari HA, Moscardini M, Cingolani R, Gigli G, Casciaro S, Pellegrino T, Ragusa A * MR Contrast Agents(292 views) Small Animal Imaging, 2011 Jul 8; 21(13): 2548-2555. Impact Factor:1.784 ViewExport to BibTeXExport to EndNote