Ex vivo assessment of trabecular bone structure from three-dimensional projection reconstruction MR micro-images(432 views) Accardo A, Candido G, Jellù V, Toffanin R, Vittur F
Ieee Trans Biomed Eng (ISSN: 0018-9294), 2003; 50(8): 967-977.
Dept. of Electronics/Comp. Science, University of Trieste, Via Valerio 10, I-34127 Trieste, Italy
Institute of Measurement Science, Slovak Academy of Sciences, SK-84 219 Bratislava, Slovakia
Dept. Biochem., Biophys./M. C., University of Trieste, I-34127 Trieste, Italy
PROTOS Research Institute, I-3400 Trieste, Italy
References: Whitehouse, W.J., Cancellous bone in the anterior part of the iliac crest (1977) Calcif. Tissue Res., 23, pp. 67-76. , Ma
Birkenhager-Frenkel, D.H., Coupron, P., Hupscher, E.A., Clermonts, E., Coutinho, M.F., Schmitz, P.I., Meunier, P.J., Age-related changes in cancellous bone structure: A two-dimensional study in the transiliac and iliac crest biopsy sites (1988) Bone Min., 4, pp. 197-216. , Jun
Spengler, D.M., Morey, E.R., Carter, D.R., Turner, R.T., Baylink, D.J., Effects of spaceflight on structural and material strength of growing bone (1983) Proc. Soc. Exp. Biol. Med., 174, pp. 224-228. , Nov
Feldkamp, L.A., Goldstein, S.A., Parfitt, A.M., Jesion, G., Kleerekoper, M., The direct examination of three-dimensional bone architecture in-vitro by computed tomography (1989) J. Bone Miner. Res., 4, pp. 3-11. , Feb
Bonse, U., Busch, F., Günnewig, O., Beckmann, F., Pahl, R., Delling, G., Hahn, M., Graeff, W., 3-D Computed X-ray tomography of human cancellous bone at 8 μm spatial and 10-4 energy resolution (1994) Bone Miner., 25, pp. 25-38. , Apr
Durand, E.P., Rüegsegger, P., Cancellous bone structure: Analysis of high resolution CT images with the run-length method (1991) J. Comput. Assist. Tomogr., 15, pp. 133-139. , Jan.-Feb
Gordon, C.L., Webber, C.E., Christoforou, N., Nahmias, C., In vivo assessment of trabecular bone structure at the distal radius from high-resolution magnetic resonance images (1997) Med. Phys., 24, pp. 585-593. , Apr
Majumdar, S., Genant, H.K., Grampp, S., Newitt, D.C., Truong, V.-H., Lin, J.C., Mathur, A., Correlation of trabecular bone structure with age, bone, mineral density, and osteoporotic status: In vivo studies in the distal radius using high-resolution magnetic resonance imaging (1997) J. Bone Min. Res., 12, pp. 111-118. , Jan
Wehrli, F.W., Hwang, S.N., Ma, J., Song, H.K., Ford, J.C., Haddad, J.G., Cancellous bone volume and structure in the forearm: Noninvasive assessment with MR microimaging and image processing (1998) Radiology, 206, pp. 347-357. , Feb
Majumdar, S., Newitt, D., Jergas, M., Gies, A., Chiu, E., Osman, D., Keltner, J., Genant, H., Evaluation of technical factors affecting the quantification of trabecular bone structure using magnetic resonance imaging (1995) Bone, 17, pp. 417-430. , Oct
Glover, G.H., Pauly, J.M., Projection-reconstruction in MRI (1996) Encyclopedia of NMR, pp. 3772-3778. , D. M. Grant and R. K. Harris, Eds. New York: Wiley
Callaghan, P.T., (1991) Principles of Nuclear Magnetic Resonance Microscopy, , Oxford, U.K.: Clarendon
Hipp, J.A., Jasujwicz, A., Simmons, C.A., Snyder, B.D., Trabecular bone morphology from micromagnetic resonance imaging (1996) J. Bone. Min. Res., 11, pp. 286-292. , Feb
Hwang, S.N., Wehrli, F.W., Williams, J.L., Probability-based structural parameters from three-dimensional nuclear magnetic resonance images as predictors of trabecular bone strength (1997) Med. Phys., 24, pp. 1255-1261. , Aug
Lauterbur, C., Image formation by induced local interactions: Examples employing nuclear magnetic resonance (1973) Nature, 242, pp. 190-191. , Mar
Jellúš, V., Latta, P., Budinsky, L., Szomolányi, P., Toffanin, R., Jarh, O., Vittur, F., Three dimensional projection-reconstruction method with constant gradient step (1997) Proc. 14th ESMRMB Meeting, p. 163
Cho, Z.H., Ahn, C.B., Juh, S.C., Lee, H.K., Nuclear magnetic resonance microscopy with 4-μm resolution: Theoretical study and experimental results (1988) Med. Phys., 15, pp. 815-824. , Nov./Dec
Brooks, R.A., Di Chiro, G., Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging (1976) Phys. Med. Biol., 21, pp. 689-732. , May
Ortendhal, D.A., Crooks, L.E., Kaufman, L., A comparison of the noise characteristics of projection reconstruction and two-dimensional Fourier transformations in NMR imaging (1983) IEEE Trans. Nucl. Sci., NS-30, pp. 696-696
Gudbjartsson, H., Patz, S., The Rician distribution of noisy MRI data (1995) Magn. Reson. Med., 34, pp. 910-914. , Dec
Mosquera, C., Irarrázabal, P., Nishimura, D.G., Noise behavior in gridding reconstruction (1995) Proc. 1995 ICASSP, pp. 2281-2284
Brown, D.G., Riederer, S.J., Contrast-to-noise ratios in maximum intensity projection images (1992) Magn. Reson. Med., 23, pp. 130-137
Parfitt, A.M., Mathews, C.H.E., Villanueva, A.R., Kleererkoper, M., Frame, B., Rao, D.S., Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis (1983) J. Clin. Invest., 72, pp. 1396-1409. , Oct
Gardner, J.R., Christopher, P.H., Webb, A.G., Tsika, R.W., Dawson, M.J., Gulani, V., Magnetic resonance microscopy of morphological alterations in mouse trabecular bone structure under conditions of simulated microgravity (2001) Magn. Reson. Med., 45, pp. 1122-1125. , Jun
Borah, B., Dufresne, T.E., Cockman, M.D., Gross, G.J., Sod, E.W., Myers, W.R., Combs, K.S., Stevens, M.L., Evaluation of changes in trabecular bone architecture and mechanical properties of minipig vertebrae by three-dimensional magnetic resonance microimaging and finite element modeling (2000) J. Bone Min. Res., 15, pp. 1786-1797. , Sep
Simmons, C.A., Hipp, J.H., Method-based differences in the automated analysis of the three-dimensional morphology of trabecular bone (1997) J. Bone Min. Res., 12, pp. 942-947. , Jun
Jara, H., Wehrli, F.W., Chung, H., Ford, J.C., High-resolution variable flip angle 3-D MR imaging of trabecular microstructure in vivo (1993) Magn. Reson. Med., 29, pp. 528-539. , Apr
Kabel, J., Odgaard, A., Van Rietbergen, B., Huiskes, R., Connectivity and the elastic properties of cancellous bone (1999) Bone, 24, pp. 115-120. , Feb
Whitehouse, W. J., Cancellous bone in the anterior part of the iliac crest (1977) Calcif. Tissue Res., 23, pp. 67-76. , Ma
Spengler, D. M., Morey, E. R., Carter, D. R., Turner, R. T., Baylink, D. J., Effects of spaceflight on structural and material strength of growing bone (1983) Proc. Soc. Exp. Biol. Med., 174, pp. 224-228. , Nov
Feldkamp, L. A., Goldstein, S. A., Parfitt, A. M., Jesion, G., Kleerekoper, M., The direct examination of three-dimensional bone architecture in-vitro by computed tomography (1989) J. Bone Miner. Res., 4, pp. 3-11. , Feb
Durand, E. P., R egsegger, P., Cancellous bone structure: Analysis of high resolution CT images with the run-length method (1991) J. Comput. Assist. Tomogr., 15, pp. 133-139. , Jan. -Feb
Gordon, C. L., Webber, C. E., Christoforou, N., Nahmias, C., In vivo assessment of trabecular bone structure at the distal radius from high-resolution magnetic resonance images (1997) Med. Phys., 24, pp. 585-593. , Apr
Wehrli, F. W., Hwang, S. N., Ma, J., Song, H. K., Ford, J. C., Haddad, J. G., Cancellous bone volume and structure in the forearm: Noninvasive assessment with MR microimaging and image processing (1998) Radiology, 206, pp. 347-357. , Feb
Glover, G. H., Pauly, J. M., Projection-reconstruction in MRI (1996) Encyclopedia of NMR, pp. 3772-3778. , D. M. Grant and R. K. Harris, Eds. New York: Wiley
Callaghan, P. T., (1991) Principles of Nuclear Magnetic Resonance Microscopy, , Oxford, U. K.: Clarendon
Hipp, J. A., Jasujwicz, A., Simmons, C. A., Snyder, B. D., Trabecular bone morphology from micromagnetic resonance imaging (1996) J. Bone. Min. Res., 11, pp. 286-292. , Feb
Hwang, S. N., Wehrli, F. W., Williams, J. L., Probability-based structural parameters from three-dimensional nuclear magnetic resonance images as predictors of trabecular bone strength (1997) Med. Phys., 24, pp. 1255-1261. , Aug
Jell, V., Latta, P., Budinsky, L., Szomol nyi, P., Toffanin, R., Jarh, O., Vittur, F., Three dimensional projection-reconstruction method with constant gradient step (1997) Proc. 14th ESMRMB Meeting, p. 163
Cho, Z. H., Ahn, C. B., Juh, S. C., Lee, H. K., Nuclear magnetic resonance microscopy with 4- m resolution: Theoretical study and experimental results (1988) Med. Phys., 15, pp. 815-824. , Nov. /Dec
Brooks, R. A., Di Chiro, G., Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging (1976) Phys. Med. Biol., 21, pp. 689-732. , May
Ortendhal, D. A., Crooks, L. E., Kaufman, L., A comparison of the noise characteristics of projection reconstruction and two-dimensional Fourier transformations in NMR imaging (1983) IEEE Trans. Nucl. Sci., NS-30, pp. 696-696
Brown, D. G., Riederer, S. J., Contrast-to-noise ratios in maximum intensity projection images (1992) Magn. Reson. Med., 23, pp. 130-137
Parfitt, A. M., Mathews, C. H. E., Villanueva, A. R., Kleererkoper, M., Frame, B., Rao, D. S., Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis (1983) J. Clin. Invest., 72, pp. 1396-1409. , Oct
Saltykov, S. A., (1958) Stereometric Metallography, , Moscow, Russia: Metallurgizdat
Gardner, J. R., Christopher, P. H., Webb, A. G., Tsika, R. W., Dawson, M. J., Gulani, V., Magnetic resonance microscopy of morphological alterations in mouse trabecular bone structure under conditions of simulated microgravity (2001) Magn. Reson. Med., 45, pp. 1122-1125. , Jun
Simmons, C. A., Hipp, J. H., Method-based differences in the automated analysis of the three-dimensional morphology of trabecular bone (1997) J. Bone Min. Res., 12, pp. 942-947. , Jun
Ex vivo assessment of trabecular bone structure from three-dimensional projection reconstruction MR micro-images
Magnetic resonance (MR) imaging has recently been proposed for assessing osteoporosis and predicting fracture risks. However, accurate acquisition techniques and image analysis protocols for the determination of the trabecular bone structure are yet to be defined. The aim of this study was to assess the potential of projection reconstruction (PR) MR microscopy in the analysis of the three-dimensional (3-D) architecture of trabecular bone and in the prediction of its biomechanical properties. High-resolution 3-D PR images (41 × 41 × 82 μm3 voxels) of 15 porcine trabecular bone explants were analyzed to determine the trabecular bone volume fraction (Vv), the mean trabecular thickness (Tb.Th), and the mean trabecular separation (Tb.Sp) using the method of directed secants. These parameters were then compared with those derived from 3-D conventional spin-echo microimages. In both cases, segmentation of the high-resolution images into bone and bone marrow was obtained using a spatial adaptive threshold. The contemporary inclusion of Vv, Tb.Th and 1/Tb.Sp in a multiple regression analysis significantly improved the prediction of Young's modulus (YM). The parameters derived from the PR spin-echo images were found to be stronger predictors of YM (R2 = 0.94, p = 0.004) than those derived from conventional spin-echo images (R2 = 0.79, p = 0.051). Our study indicates that projection reconstruction MR microscopy appears to be more accurate than the conventional Fourier transform method in the quantification of trabecular bone structure and in the prediction of its biomechanical properties. The proposed PR approach should be readily adaptable to the in vivo MRI studies of osteoporosis.
Ex vivo assessment of trabecular bone structure from three-dimensional projection reconstruction MR micro-images
No results.
Ex vivo assessment of trabecular bone structure from three-dimensional projection reconstruction MR micro-images