Keywords: Accelerometer, Biomedical Measurements, Medical Services, Activity Monitoring, Home Care, Patient Monitoring Systems, Wearable Systems, Wearable Computers, Remote Patient Monitoring,
Affiliations: Consiglio Nazionale delle Ricerche, Istituto di Ingegneria Biomedica, Roma, Italy
Dipartimento di Ingegneria Elettrica, Università degli Studi di Napoli Federico II, Napoli, Italy
References: Winters, J.M., Rosen, M.J., The rehabilitation engineering research center on telerehabilitation: Mission and approaches (1999) Engineering in Med. and Biol.,
Lukowicz, P., Kirstein, T., Troster, G., Wearable systems for health care applications (2004) Methods Inf. Med., 43, pp. 232-238
Zhang, Measurement of human daily physical activity (2003) Obesity Research, 11 (1), pp. 33-40
Matthews, C.E., Freedson, P.S., Field trial of a three-dimensional activity monitor: Comparison with self report (1995) Med. Sci. Sports Exerc., 27, pp. 1071-1078
Melanson, E., Freedson, P.S., Validity of the computer science and applications, inc. activity monitor (1995) Med. Sci. Sports Exerc, 27, pp. 934-940
Montoye, H.J., Kemper, H.C.G., Saris, W.H.M., Washburn, R.A., (1996) Measuring Physical Activity and Energy Expenditure, , Human Kinetics
Brussmann, J.B., Martens, W.L., Tulen, J.-H., Schasfoort, F.C., Van Den Berg-Emons, H.J., Stam, H.J., Measuring daily behaviour using ambulatory accelerometry: The activity monitor (2001) Behav. Res. Methods Instr. Comp., 33, pp. 349-356
Uiterwaal, M., Glerum, E.B., Busser, H.J., Van Lummel, R.C., Ambulatory monitoring of physical activity in working situations, a validation study (1998) J. Med. Eng. Tech., 22, pp. 168-172
Kiani, K., Snijders, C.J., Gelsema, E.S., Recognition of daily life motor activity classes using an artificial neural network (1998) Arch. Phys. Med. Rehabil., 79, pp. 147-174
Foerster, F., Fahrenberg, J., Motion pattern and posture: Correctly assessed by calibrated accelerometers (2000) Behav. Res. Methods Instr. Comp., 32, pp. 450-457
Sekine, M., Tamura, T., Togawa, T., Fukui, Y., Classification of waist acceleration signals in a continuous walking records (2000) Med. Eng. Phys., 22, pp. 285-291
Hansson, G.A., Asterland, P., Holmer, N.G., Skerfying, S., Validity and reliability of triaxial accelerometers for inclinometry in posture analysis (2001) Med. Biol. Eng. Comp., 39, pp. 405-413
Veltink, P.H., Brussmann, H.B., De Vries, W., Martens, W.L., Van Lummel, R.C., Detection of static and dynamic activities using uniaxial accelerometers (1996) IEEE Trans. Rehabil. Eng., 4, pp. 375-885
Mathie, M.J., Coster, A.C., Lovell, N.H., Celler, B.G., Classification of basic daily movements using a triaxial accelerometer (2004) Med. Biol. Eng. Comput., 42, pp. 679-687
Ainsworth, B.E., Compendium of physical activities: Classification of energy cost of human physical activities (1993) Med. Sci. Sport and Exerc., 25 (1), pp. 71-80
Davis, M.G., Fox, K.R., Physical activity patterns assessed by accelerometry in older people (2007) Eur. J. Appl. Physiol., 100, pp. 581-589
Chen, K.Y., Sun, M., Improving energy expenditure estimation by using a triaxial accelerometer (1997) J. Appl. Physiol., 83 (6), pp. 2112-2122
A Remote Monitoring and Automatic Diagnostic System for Elderly and Handicapped People at Home, , Project n. FIL568210 Granted in the framework of POR 3.17 ICT by Regione Campania
Winters, J. M., Rosen, M. J., The rehabilitation engineering research center on telerehabilitation: Mission and approaches (1999) Engineering in Med. and Biol.,
Matthews, C. E., Freedson, P. S., Field trial of a three-dimensional activity monitor: Comparison with self report (1995) Med. Sci. Sports Exerc., 27, pp. 1071-1078
Montoye, H. J., Kemper, H. C. G., Saris, W. H. M., Washburn, R. A., (1996) Measuring Physical Activity and Energy Expenditure, , Human Kinetics
Brussmann, J. B., Martens, W. L., Tulen, J. -H., Schasfoort, F. C., Van Den Berg-Emons, H. J., Stam, H. J., Measuring daily behaviour using ambulatory accelerometry: The activity monitor (2001) Behav. Res. Methods Instr. Comp., 33, pp. 349-356
Hansson, G. A., Asterland, P., Holmer, N. G., Skerfying, S., Validity and reliability of triaxial accelerometers for inclinometry in posture analysis (2001) Med. Biol. Eng. Comp., 39, pp. 405-413
Veltink, P. H., Brussmann, H. B., De Vries, W., Martens, W. L., Van Lummel, R. C., Detection of static and dynamic activities using uniaxial accelerometers (1996) IEEE Trans. Rehabil. Eng., 4, pp. 375-885
Mathie, M. J., Coster, A. C., Lovell, N. H., Celler, B. G., Classification of basic daily movements using a triaxial accelerometer (2004) Med. Biol. Eng. Comput., 42, pp. 679-687
Ainsworth, B. E., Compendium of physical activities: Classification of energy cost of human physical activities (1993) Med. Sci. Sport and Exerc., 25 (1), pp. 71-80
Davis, M. G., Fox, K. R., Physical activity patterns assessed by accelerometry in older people (2007) Eur. J. Appl. Physiol., 100, pp. 581-589
Chen, K. Y., Sun, M., Improving energy expenditure estimation by using a triaxial accelerometer (1997) J. Appl. Physiol., 83 (6), pp. 2112-2122
A MINIMALLY-INVASIVE SYSTEM FOR FREE-LIVING ACTIVITY MONITORING IN HOME CARE
A minimal wearable system to monitoring remotely normal free-living activity (e.g. laying, sitting, standing, and slow walking) of patients in their home space is proposed. Owing to its wireless features, the system can represent a useful tool to be implemented in a long-time patient monitoring system. These systems are useful for the clinical out coming or for minor chronic pathologies not requiring hospitalization.
A MINIMALLY-INVASIVE SYSTEM FOR FREE-LIVING ACTIVITY MONITORING IN HOME CARE
No results.
A MINIMALLY-INVASIVE SYSTEM FOR FREE-LIVING ACTIVITY MONITORING IN HOME CARE