Rapid Selection and Proliferation of CD133(+) Cells from Cancer Cell Lines: Chemotherapeutic Implications(457 views) Kelly SE, Di Benedetto A, Greco A, Howard CM, Sollars VE, Primerano DA, Valluri JV, Claudio PP
Keywords: Caspase 3, Cd133 Antigen, Cisplatin, Doxorubicin, Methotrexate, Antineoplastic Agent, Glycoprotein, Leukocyte Antigen, Peptide, Apoptosis, Article, Bioreactor, Cancer Cell Culture, Cancer Chemotherapy, Cancer Stem Cell, Cell Growth, Cell Proliferation, Controlled Study, Drug Sensitivity, Gravity, Human, Human Cell, Hydrodynamic Focusing Bioreactor, Intermethod Comparison, Osteosarcoma Cell, Rotary Cell Culture System, Cell Separation, Cytology, Drug Screening, Methodology, Microgravity, Standard, Tumor Cell Line, Drug Screening Assays, Antitumor, Hypogravity, Neoplastic Stem Cells,
Affiliations: *** IBB - CNR ***
Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
Department of Basic and Applied Biology, Faculty of Sciences, University of L'Aquila, L'Aquila, Italy
CEINGE-Advanced Biotechnology s.c.ar.l., Naples, Italy
Department of Biomorphological and Functional Science, University of Naples Federico II, IBB-CNR, Naples, Italy
Department of Biology, Marshall University, Huntington, WV, United States
Department of Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
References: Reya, T., Morrison, S.J., Clarke, M.F., Weissman, I.L., Stem cells, cancer, and cancer stem cells (2001) Nature, 414, pp. 105-11
Dean, M., Cancer stem cells: Redefining the paradigm of cancer treatment strategies (2006) Mol Interv, 6, pp. 140-148
Shipitsin, M., Polyak, K., The cancer stem cell hypothesis: In search of definitions, markers, and relevance (2008) Lab Invest, 88, pp. 459-463
Gao, J.X., Cancer stem cells: The lessons from pre-cancerous stem cells (2008) J Cell Mol Med, 12, pp. 67-96
Kelly, K., Yin, J.J., Prostate cancer and metastasis initiating stem cells (2008) Cell Res, 18, pp. 528-537
Mizrak, D., Brittan, M., Alison, M.R., CD133: Molecule of the moment (2008) J Pathol, 214, pp. 3-9
Tysnes, B.B., Bjerkvig, R., Cancer initiation and progression: Involvement of stem cells and the microenvironment (2007) Biochim Biophys Acta, 1775, pp. 283-297
Fan, X., Salford, L.G., Widegren, B., Glioma stem cells: Evidence and limitation (2007) Semin Cancer Biol, 17, pp. 214-218
Farnie, G., Clarke, R.B., Mammary stem cells and breast cancer-role of Notch signalling (2007) Stem Cell Rev, 3, pp. 169-175
Lee, C.J., Dosch, J., Simeone, D.M., Pancreatic cancer stem cells (2008) J Clin Oncol, 26, pp. 2806-2812
Maitland, N.J., Collins, A.T., Prostate cancer stem cells: A new target for therapy (2008) J Clin Oncol, 26, pp. 2862-2870
Molyneux, G., Regan, J., Smalley, M.J., Mammary stem cells and breast cancer (2007) Cell Mol Life Sci, 64, pp. 3248-3260
Peacock, C.D., Watkins, D.N., Cancer stem cells and the ontogeny of lung cancer (2008) J Clin Oncol, 26, pp. 2883-2889
Zabierowski, S.E., Herlyn, M., Melanoma stem cells: The dark seed of melanoma (2008) J Clin Oncol, 26, pp. 2890-2894
Wang, J.C., Dick, J.E., Cancer stem cells: Lessons from leukemia (2005) Trends Cell Biol, 15, pp. 494-501
Soltysova, A., Altanerova, V., Altaner, C., Cancer stem cells (2005) Neoplasma, 52, pp. 435-440
Guo, W., Lasky 3rd., J.L., Wu, H., Cancer stem cells (2006) Pediatr Res, 59, pp. 59R-64R
Okamoto, O.K., Perez, J.F., Targeting cancer stem cells with monoclonal antibodies: A new perspective in cancer therapy and diagnosis (2008) Expert Rev Mol Diagn, 8, pp. 387-393
Rajan, P., Srinivasan, R., Targeting Cancer Stem Cells in Cancer Prevention and Therapy (2008) Stem Cell Rev
Ren, C., Kumar, S., Chanda, D., Kallman, L., Chen, J., Cancer gene therapy using mesenchymal stem cells expressing interferon-beta in a mouse prostate cancer lung metastasis model (2008) Gene Ther
Lin, T.L., Fu, C., Sakamoto, K.M., Cancer stem cells: The root of the problem (2007) Pediatr Res, 62, p. 239
Kasper, S., Stem cells: The root of prostate cancer? (2008) J Cell Physiol, 216, pp. 332-336
Mihailova, M., Trenev, V., Genova, P., Konstantinov, S., Process simulation in a mechatronic bioreactor device with speed-regulated motors for growing of three-dimensional cell cultures (2006) Ann N Y Acad Sci, 1091, pp. 470-489
Mitteregger, R., Vogt, G., Rossmanith, E., Falkenhagen, D., Rotary cell culture system (RCCS): A new method for cultivating hepatocytes on microcarriers (1999) Int J Artif Organs, 22, pp. 816-822
Sakai, S., Mishima, H., Ishii, T., Akaogi, H., Yoshioka, T., Rotating hreedimensional dynamic culture of adult human bone marrow-derived cells for tissue engineering of hyaline cartilage (2009) J Orthop Res, 27, pp. 517-521
Villanueva, I., Klement, B.J., von Deutsch, D., Bryant, S.J., Cross-linking density alters early metabolic activities in chondrocytes encapsulated in poly(ethylene glycol) hydrogels and cultured in the rotating wall vessel (2009) Biotechnol Bioeng, 102, pp. 1242-1250
Kumari, R., Singh, K.P., Dumond Jr., J.W., Simulated microgravity decreases DNA repair capacity and induces DNA damage in human lymphocytes (2009) J Cell Biochem, 107, pp. 723-731
Grun, B., Benjamin, E., Sinclair, J., Timms, J.F., Jacobs, I.J., Three dimensional in vitro cell biology models of ovarian and endometrial cancer (2009) Cell Prolif, 42, pp. 219-228
Lawrenson, K., Benjamin, E., Turmaine, M., Jacobs, I., Gayther, S., In vitro three-dimensional modelling of human ovarian surface epithelial cells (2009) Cell Prolif, 42, pp. 385-393
Gibbs, C.P., Kukekov, V.G., Reith, J.D., Tchigrinova, O., Suslov, O.N., Stem-like cells in bone sarcomas: Implications for tumorigenesis (2005) Neoplasia, 7, pp. 967-976
Tirino, V., Desiderio, V., D'aquino, R., de Francesco, F., Pirozzi, G., Detection and characterization of CD133+ cancer stem cells in human solid tumours (2008) PLoS One, 3, pp. e3469
Badhwar, G.D., Nachtwey, D.S., Yang, T.-H., Radiation issues for piloted Mars mission (1992) Adv Space Res, 12, pp. 195-200
Baisden, D.L., Beven, G.E., Campbell, M.R., Charles, J.B., Dervay, J.P., Human health and performance for long-duration spaceflight (2008) Aviat Space Environ Med, 79, pp. 629-635
Barr, Y.R., Bacal, K., Jones, J.A., Hamilton, D.R., Breast cancer and spaceflight: Risk and management (2007) Aviat Space Environ Med, 78, pp. A26-A37
Dicello, J.F., The impact of the new biology on radiation risks in space (2003) Health Phys, 85, pp. 94-102
Durante, M., Cucinotta, F.A., Heavy ion carcinogenesis and human space exploration (2008) Nat Rev Cancer, 8, pp. 465-472
Williams, J.R., Zhang, Y., Zhou, H., Osman, M., Cha, D., Predicting cancer rates in astronauts from animal carcinogenesis studies and cellular markers (1999) Mutat Res, 430, pp. 255-269
Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J., Clarke, M.F., Prospective identification of tumorigenic breast cancer cells (2003) Proc Natl Acad Sci USA, 100, pp. 3983-3988
Chiba, T., Kita, K., Zheng, Y.W., Yokosuka, O., Saisho, H., Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties (2006) Hepatology, 44, pp. 240-251
Collins, A.T., Berry, P.A., Hyde, C., Stower, M.J., Maitland, N.J., Prospective identification of tumorigenic prostate cancer stem cells (2005) Cancer Res, 65, pp. 10946-10951
Hamburger, A.W., Salmon, S.E., Primary bioassay of human tumor stem cells (1977) Science, 197, pp. 461-463
Singh, S.K., Clarke, I.D., Terasaki, M., Bonn, V.E., Hawkins, C., Identification of a cancer stem cell in human brain tumors (2003) Cancer Res, 63, pp. 5821-5828
Wodinsky, I., Swiniarski, J., Kensler, C.J., Spleen colony studies of leukemia L1210. 3. Differential sensitivities of normal hematopoietic and resistant L1210 colony-forming cells to 6-mercaptopurine (NSC-755) (1968) Cancer Chemother Rep, 52, pp. 251-255
Dome, B., Timar, J., Dobos, J., Meszaros, L., Raso, E., Identification and clinical significance of circulating endothelial progenitor cells in human nonsmall cell lung cancer (2006) Cancer Res, 66, pp. 7341-7347
Grichnik, J.M., Burch, J.A., Schulteis, R.D., Shan, S., Liu, J., Melanoma, a tumor based on a mutant stem cell? (2006) J Invest Dermatol, 126, pp. 142-153
Hirschmann-Jax, C., Foster, A.E., Wulf, G.G., Nuchtern, J.G., Jax, T.W., A distinct ''side population'' of cells with high drug efflux capacity in human tumor cells (2004) Proc Natl Acad Sci U S A, 101, pp. 14228-14233
Kondo, T., Setoguchi, T., Taga, T., Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line (2004) Proc Natl Acad Sci U S A, 101, pp. 781-786
Dean, M., Fojo, T., Bates, S., Tumour stem cells and drug resistance (2005) Nat Rev Cancer, 5, pp. 275-284
Reynolds, B.A., Tetzlaff, W., Weiss, S., A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes (1992) J Neurosci, 12, pp. 455-4574
Reynolds, B.A., Weiss, S., Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system (1992) Science, 255, pp. 1707-1710
Schuetze, S.M., Chemotherapy in the management of osteosarcoma and Ewing's sarcoma (2007) J Natl Compr Canc Netw, 5, pp. 449-455
Reedijk, J., Lohman, P.H., Cisplatin: Synthesis, antitumour activity and mechanism of action (1985) Pharm Weekbl Sci, 7, pp. 173-180
White, J.C., Recent concepts on the mechanism of action of methotrexate (1981) Cancer Treat Rep, 65 SUPPL. 1, pp. 3-12
Sartiano, G.P., Lynch, W.E., Bullington, W.D., Mechanism of action of the anthracycline anti-tumor antibiotics, doxorubicin, daunomycin and rubidazone: Preferential inhibition of DNA polymerase alpha (1979) J Antibiot, 32, pp. 1038-1045. , Tokyo
Berend, K.R., Pietrobon, R., Moore, J.O., Dibernardo, L., Harrelson, J.M., Adjuvant chemotherapy for osteosarcoma may not increase survival after neoadjuvant chemotherapy and surgical resection (2001) J Surg Oncol, 78, pp. 162-170
Ferguson, W.S., Goorin, A.M., Current treatment of osteosarcoma (2001) Cancer Invest, 19, pp. 292-315
Zalupski, M.M., Rankin, C., Ryan, J.R., Lucas, D.R., Muler, J., Adjuvant therapy of osteosarcoma-A Phase II trial: Southwest Oncology Group study 9139 (2004) Cancer, 100, pp. 818-825
Al-Romaih, K., Somers, G.R., Bayani, J., Hughes, S., Prasad, M., Modulation by decitabine of gene expression and growth of osteosarcoma U2OS cells in vitro and in xenografts: Identification of apoptotic genes as targets for demethylation (2007) Cancer Cell Int, 7, p. 14
Gao, J. X., Cancer stem cells: The lessons from pre-cancerous stem cells (2008) J Cell Mol Med, 12, pp. 67-96
Kelly, K., Yin, J. J., Prostate cancer and metastasis initiating stem cells (2008) Cell Res, 18, pp. 528-537
Tysnes, B. B., Bjerkvig, R., Cancer initiation and progression: Involvement of stem cells and the microenvironment (2007) Biochim Biophys Acta, 1775, pp. 283-297
Lee, C. J., Dosch, J., Simeone, D. M., Pancreatic cancer stem cells (2008) J Clin Oncol, 26, pp. 2806-2812
Maitland, N. J., Collins, A. T., Prostate cancer stem cells: A new target for therapy (2008) J Clin Oncol, 26, pp. 2862-2870
Peacock, C. D., Watkins, D. N., Cancer stem cells and the ontogeny of lung cancer (2008) J Clin Oncol, 26, pp. 2883-2889
Zabierowski, S. E., Herlyn, M., Melanoma stem cells: The dark seed of melanoma (2008) J Clin Oncol, 26, pp. 2890-2894
Wang, J. C., Dick, J. E., Cancer stem cells: Lessons from leukemia (2005) Trends Cell Biol, 15, pp. 494-501
Okamoto, O. K., Perez, J. F., Targeting cancer stem cells with monoclonal antibodies: A new perspective in cancer therapy and diagnosis (2008) Expert Rev Mol Diagn, 8, pp. 387-393
Lin, T. L., Fu, C., Sakamoto, K. M., Cancer stem cells: The root of the problem (2007) Pediatr Res, 62, p. 239
Gibbs, C. P., Kukekov, V. G., Reith, J. D., Tchigrinova, O., Suslov, O. N., Stem-like cells in bone sarcomas: Implications for tumorigenesis (2005) Neoplasia, 7, pp. 967-976
Badhwar, G. D., Nachtwey, D. S., Yang, T. -H., Radiation issues for piloted Mars mission (1992) Adv Space Res, 12, pp. 195-200
Baisden, D. L., Beven, G. E., Campbell, M. R., Charles, J. B., Dervay, J. P., Human health and performance for long-duration spaceflight (2008) Aviat Space Environ Med, 79, pp. 629-635
Barr, Y. R., Bacal, K., Jones, J. A., Hamilton, D. R., Breast cancer and spaceflight: Risk and management (2007) Aviat Space Environ Med, 78, pp. A26-A37
Dicello, J. F., The impact of the new biology on radiation risks in space (2003) Health Phys, 85, pp. 94-102
Williams, J. R., Zhang, Y., Zhou, H., Osman, M., Cha, D., Predicting cancer rates in astronauts from animal carcinogenesis studies and cellular markers (1999) Mutat Res, 430, pp. 255-269
Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J., Maitland, N. J., Prospective identification of tumorigenic prostate cancer stem cells (2005) Cancer Res, 65, pp. 10946-10951
Hamburger, A. W., Salmon, S. E., Primary bioassay of human tumor stem cells (1977) Science, 197, pp. 461-463
Singh, S. K., Clarke, I. D., Terasaki, M., Bonn, V. E., Hawkins, C., Identification of a cancer stem cell in human brain tumors (2003) Cancer Res, 63, pp. 5821-5828
Grichnik, J. M., Burch, J. A., Schulteis, R. D., Shan, S., Liu, J., Melanoma, a tumor based on a mutant stem cell? (2006) J Invest Dermatol, 126, pp. 142-153
Reynolds, B. A., Tetzlaff, W., Weiss, S., A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes (1992) J Neurosci, 12, pp. 455-4574
Reynolds, B. A., Weiss, S., Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system (1992) Science, 255, pp. 1707-1710
Schuetze, S. M., Chemotherapy in the management of osteosarcoma and Ewing's sarcoma (2007) J Natl Compr Canc Netw, 5, pp. 449-455
White, J. C., Recent concepts on the mechanism of action of methotrexate (1981) Cancer Treat Rep, 65 SUPPL. 1, pp. 3-12
Sartiano, G. P., Lynch, W. E., Bullington, W. D., Mechanism of action of the anthracycline anti-tumor antibiotics, doxorubicin, daunomycin and rubidazone: Preferential inhibition of DNA polymerase alpha (1979) J Antibiot, 32, pp. 1038-1045. , Tokyo
Berend, K. R., Pietrobon, R., Moore, J. O., Dibernardo, L., Harrelson, J. M., Adjuvant chemotherapy for osteosarcoma may not increase survival after neoadjuvant chemotherapy and surgical resection (2001) J Surg Oncol, 78, pp. 162-170
Ferguson, W. S., Goorin, A. M., Current treatment of osteosarcoma (2001) Cancer Invest, 19, pp. 292-315
Zalupski, M. M., Rankin, C., Ryan, J. R., Lucas, D. R., Muler, J., Adjuvant therapy of osteosarcoma-A Phase II trial: Southwest Oncology Group study 9139 (2004) Cancer, 100, pp. 818-825
Rapid Selection and Proliferation of CD133(+) Cells from Cancer Cell Lines: Chemotherapeutic Implications
Cancer stem cells (CSCs) are considered a subset of the bulk tumor responsible for initiating and maintaining the disease. Several surface cellular markers have been recently used to identify CSCs. Among those is CD133, which is expressed by hematopoietic progenitor cells as well as embryonic stem cells and various cancers. We have recently isolated and cultured CD133 positive [CD133(+)] cells from various cancer cell lines using a NASA developed Hydrodynamic Focusing Bioreactor (HFB) (Celdyne, Houston, TX). For comparison, another bioreactor, the rotary cell culture system (RCCS) manufactured by Synthecon (Houston, TX) was used. Both the HFB and the RCCS bioreactors simulate aspects of hypogravity. In our study, the HFB increased CD133(+) cell growth from various cell lines compared to the RCCS vessel and to normal gravity control. We observed a (+) 15-fold proliferation of the CD133(+) cellular fraction with cancer cells that were cultured for 7-days at optimized conditions. The RCCS vessel instead yielded a (2) 4.8-fold decrease in the CD133(+) cellular fraction respect to the HFB after 7-days of culture. Interestingly, we also found that the hypogravity environment of the HFB greatly sensitized the CD133(+) cancer cells, which are normally resistant to chemo treatment, to become susceptible to various chemotherapeutic agents, paving the way to less toxic and more effective chemotherapeutic treatment in patients. To be able to test the efficacy of cytotoxic agents in vitro prior to their use in clinical setting on cancer cells as well as on cancer stem cells may pave the way to more effective chemotherapeutic strategies in patients. This could be an important advancement in the therapeutic options of oncologic patients, allowing for more targeted and personalized chemotherapy regimens as well as for higher response rates.
Rapid Selection and Proliferation of CD133(+) Cells from Cancer Cell Lines: Chemotherapeutic Implications
Petraglia F, Singh AA, Carafa V, Nebbioso A, Conte M, Scisciola L, Valente S, Baldi A, Mandoli A, Petrizzi VB, Ingenito C, De Falco S, Cicatiello V, Apicella I, Janssen-megens EM, Kim B, Yi G, Logie C, Heath S, Ruvo M, Wierenga ATJ, Flicek P, Yaspo ML, Della Valle V, Bernard O, Tomassi S, Novellino E, Feoli A, Sbardella G, Gut I, Vellenga E, Stunnenberg HG, Mai A, Martens JHA, Altucci L * Combined HAT/EZH2 modulation leads to cancer-selective cell death(284 views) Oncotarget (ISSN: 1949-2553electronic, 1949-2553linking), 2018 May 22; 9(39): 25630-25646. Impact Factor:5.008 ViewExport to BibTeXExport to EndNote