Towards understanding the molecular recognition process in prokaryotic zinc-finger domain(415 views) Russo L, Palmieri M, Caso JV, Abrosca GD, Diana D, Malgieri G, Baglivo I, Isernia C, Pedone PV, Fattorusso R
Department of Environmental, Biological and Pharmaceutical Sciences and Technology, Via Vivaldi 43, 81100 Caserta, Italy.
Institute of Biostructures and Bioimaging -CNR, Via Mezzocannone 16, 80134 Naples, Italy.
Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy.
References: Ginsberg, A.M., King, B.O., Roeder, R.G., Xenopus 5S gene transcription factor, TFIIIA: Characterization of a cDNA clone and measurement of RNA levels throughout development (1984) Cell, 39, pp. 479-48
Miller, J., McLachlan, A.D., Klug, A., Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes (1985) EMBO J., 4, pp. 1609-1614
Pieler, T., Theunissen, O., TFIIIA: Nine fingers-three hands? (1993) Trends Biochem. Sci., 18, pp. 226-230
Klug, A., Schwabe, J.W., Protein motifs 5. Zinc fingers (1995) FASEB J., 9, pp. 597-604
Wolfe, S.A., Nekludova, L., Pabo, C.O., DNA recognition by Cys2His2 zinc finger proteins (2000) Annu. Rev. Biophys. Biomol. Struct., 29, pp. 183-212
Brown, R.S., Zinc finger proteins: Getting a grip on RNA (2005) Curr. Opin. Struct. Biol., 15, pp. 94-98
Gamsjaeger, R., Liew, C.K., Loughlin, F.E., Crossley, M., Mackay, J.P., Sticky fingers: Zinc-fingers as protein-recognition motifs (2007) Trends Biochem. Sci., 32, pp. 63-70
Berg, J.M., Godwin, H.A., Lessons from zinc-binding peptides (1997) Annu. Rev. Biophys. Biomol. Struct., 26, pp. 357-371
Pedone, P.V., Ghirlando, R., Clore, G.M., Gronenborn, A.M., Felsenfeld, G., Omichinski, J.G., The single Cys2-His2 zinc finger domain of the GAGA protein flanked by basic residues is sufficient for high-affinity specific DNA binding (1996) Proc. Natl. Acad. Sci. USA, 93, pp. 2822-2826
Omichinski, J.G., Pedone, P.V., Felsenfeld, G., Gronenborn, A.M., Clore, G.M., The solution structure of a specific GAGA factor-DNA complex reveals a modular binding mode (1997) Nat. Struct. Biol., 4, pp. 122-132
Dathan, N., Zaccaro, L., Esposito, S., Isernia, C., Omichinski, J.G., Riccio, A., Pedone, C., Pedone, P.V., The Arabidopsis SUPERMAN protein is able to specifically bind DNA through its single Cys2-His2 zinc finger motif (2002) Nucleic Acids Res., 30, pp. 4945-4951
Isernia, C., Bucci, E., Leone, M., Zaccaro, L., Di Lello, P., Digilio, G., Esposito, S., Fattorusso, R., NMR structure of the single QALGGH zinc finger domain from the Arabidopsis thaliana SUPERMAN protein (2003) Chembiochem, 4, pp. 171-180
Malgieri, G., Russo, L., Esposito, S., Baglivo, I., Zaccaro, L., Pedone, E.M., Di Blasio, B., Fattorusso, R., The prokaryotic Cys2His2 zinc-finger adopts a novel fold as revealed by the NMR structure of Agrobacterium tumefaciens Ros DNA-binding domain (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 17341-17346
Baglivo, I., Russo, L., Esposito, S., Malgieri, G., Renda, M., Salluzzo, A., Di Blasio, B., Pedone, P.V., The structural role of the zinc ion can be dispensable in prokaryotic zinc-finger domains (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 6933-6938
Baglivo, I., Palmieri, M., Rivellino, A., Netti, F., Russo, L., Esposito, S., Iacovino, R., Malgieri, G., Molecular strategies to replace the structural metal site in the prokaryotic zinc finger domain (2014) Biochim. Biophys. Acta, 1844, pp. 497-504
Garbuzynskiy, S.O., Melnik, B.S., Lobanov, M.Y., Finkelstein, A.V., Galzitskaya, O.V., Comparison of X-ray and NMR structures: Is there a systematic difference in residue contacts between X-ray-and NMR-resolved protein structures? (2005) Proteins, 60, pp. 139-147
Brüschweiler, R., New approaches to the dynamic interpretation and prediction of NMR relaxation data from proteins (2003) Curr. Opin. Struct. Biol., 13, pp. 175-183
Eisenmesser, E.Z., Bosco, D.A., Akke, M., Kern, D., Enzyme dynamics during catalysis (2002) Science, 295, pp. 1520-1523
Mulder, F.A., Mittermaier, A., Hon, B., Dahlquist, F.W., Kay, L.E., Studying excited states of proteins by NMR spectroscopy (2001) Nat. Struct. Biol., 8, pp. 932-935
Ryabov, Y.E., Fushman, D., A model of interdomain mobility in a multidomain protein (2007) J. Am. Chem. Soc., 129, pp. 3315-3327
Baber, J.L., Szabo, A., Tjandra, N., Analysis of slow interdomain motion of macromolecules using NMR relaxation data (2001) J. Am. Chem. Soc., 123, pp. 3953-3959
Meiler, J., Prompers, J.J., Peti, W., Griesinger, C., Brüschweiler, R., Model-free approach to the dynamic interpretation of residual dipolar couplings in globular proteins (2001) J. Am. Chem. Soc., 123, pp. 6098-6107
Lindorff-Larsen, K., Best, R.B., Depristo, M.A., Dobson, C.M., Vendruscolo, M., Simultaneous determination of protein structure and dynamics (2005) Nature, 433, pp. 128-132
Huang, S.Y., Zou, X., Efficient molecular docking of NMR structures: Application to HIV-1 protease (2007) Protein Sci., 16, pp. 43-51
Karplus, M., McCammon, J.A., Molecular dynamics simulations of biomolecules (2002) Nat. Struct. Biol., 9, pp. 646-652
Durrant, J.D., McCammon, J.A., Molecular dynamics simulations and drug discovery (2011) BMC Biol., 9, p. 71
Russo, L., Maestre-Martinez, M., Wolff, S., Becker, S., Griesinger, C., Interdomain dynamics explored by paramagnetic NMR (2013) J. Am. Chem. Soc., 135, pp. 17111-17120
Berjanskii, M.V., Wishart, D.S., A simple method to predict protein flexibility using secondary chemical shifts (2005) J. Am. Chem. Soc., 127, pp. 14970-14971
Marsh, J.A., Singh, V.K., Jia, Z., Forman-Kay, J.D., Sensitivity of secondary structure propensities to sequence differences between alpha-and gamma-synuclein: Implications for fibrillation (2006) Protein Sci., 15, pp. 2795-2804
Cheung, M.S., Maguire, M.L., Stevens, T.J., Broadhurst, R.W., DANGLE: A Bayesian inferential method for predicting protein backbone dihedral angles and secondary structure (2010) J. Magn. Reson., 202, pp. 223-233
Lehtivarjo, J., Hassinen, T., Korhonen, S.P., Peräkylä, M., Laatikainen, R., 4D prediction of protein (1)H chemical shifts (2009) J. Biomol. NMR, 45, pp. 413-426
Lehtivarjo, J., Tuppurainen, K., Hassinen, T., Laatikainen, R., Peräkylä, M., Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction (2012) J. Biomol. NMR, 52, pp. 257-267
Korzhnev, D.M., Salvatella, X., Vendruscolo, M., Di Nardo, A.A., Davidson, A.R., Dobson, C.M., Kay, L.E., Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR (2004) Nature, 430, pp. 586-590
Adcock, S.A., McCammon, J.A., Molecular dynamics: Survey of methods for simulating the activity of proteins (2006) Chem. Rev., 106, pp. 1589-1615
Lipari, G., Szabo, A., Model-Free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results (1982) J. Am. Chem. Soc., 104, pp. 4559-4570
Dominguez, C., Boelens, R., Bonvin, A.M., HADDOCK: A protein-protein docking approach based on biochemical or biophysical information (2003) J. Am. Chem. Soc., 125, pp. 1731-1737
De Vries, S.J., Van Dijk, M., Bonvin, A.M., The HADDOCK web server for data-driven biomolecular docking (2010) Nat. Protoc., 5, pp. 883-897
Hubbard, S.J., Thornton, J.M., (1993) NACCESS, , Department of Biochemistry and Molecular Biology, University Collage London
Elrod-Erickson, M., Rould, M.A., Nekludova, L., Pabo, C.O., Zif268 protein-DNA complex refined at 1.6 A: A model system for understanding zinc finger-DNA interactions (1996) Structure, 4, pp. 1171-1180
Netti, F., Malgieri, G., Esposito, S., Palmieri, M., Baglivo, I., Isernia, C., Omichinski, J.G., Fattorusso, R., An experimentally tested scenario for the structural evolution of eukaryotic Cys2His2 zinc fingers from eubacterial ros homologs (2013) Mol. Biol. Evol., 30, pp. 1504-1513
Palmieri, M., Malgieri, G., Russo, L., Baglivo, I., Esposito, S., Netti, F., Del Gatto, A., Fattorusso, R., Structural Zn(II) implies a switch from fully cooperative to partly downhill folding in highly homologous proteins (2013) J. Am. Chem. Soc., 135, pp. 5220-5228
Hess, B., Kutzner, C., Van Der Spoel, D., Lindahl, E., GROMACS 4: Algorithms for highly efficient, Load-Balanced, and Scalable molecular simulation (2008) J. Chem. Theory Comput., 4, pp. 435-447
Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., Simmerling, C., Comparison of multiple Amber force fields and development of improved protein backbone parameters (2006) Proteins, 65, pp. 712-725
Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of simple Potential functions for simulating liquid water (1983) J. Chem. Phys., 79, pp. 926-935
Gordon, J.C., Myers, J.B., Folta, T., Shoja, V., Heath, L.S., Onufriev, A., H++: A server for estimating pKas and adding missing hydrogens to macromolecules (2005) Nucleic Acids Res., 33, pp. 368-W371
Delano, W.L., (2002) The PyMOL Molecular Graphics System, , DeLano Scientific San Carlos, CA, USA
Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., UCSF Chimera - A visualization system for exploratory research and analysis (2004) J. Comput. Chem., 25, pp. 1605-1612
Koradi, R., Billeter, M., Wüthrich, K., MOLMOL: A program for display and analysis of macromolecular structures (1996) J. Mol. Graph, 14, pp. 29-32
Laskowski, R.A., Rullmannn, J.A., Macarthur, M.W., Kaptein, R., Thornton, J.M., AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR (1996) J. Biomol. NMR, 8, pp. 477-486
Davis, I.W., Leaver-Fay, A., Chen, V.B., Block, J.N., Kapral, G.J., Wang, X., Murray, L.W., Richardson, D.C., MolProbity: All-atom contacts and structure validation for proteins and nucleic acids (2007) Nucleic Acids Res., 35, pp. 375-W383
Kabsch, W., Sander, C., Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features (1983) Biopolymers, 22, pp. 2577-2637
Cornilescu, G., Marquardt, J.L., Ottiger, M., Bax, A., Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase (1998) J. Am. Chem. Soc., 120, pp. 6836-6837
Tjong, H., Zhou, H.X., DISPLAR: An accurate method for predicting DNA-binding sites on protein surfaces (2007) Nucleic Acids Res., 35, pp. 1465-1477
Lu, X.J., Olson, W.K., 3DNA: A software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures (2003) Nucleic Acids Res., 31, pp. 5108-5121
Towards understanding the molecular recognition process in prokaryotic zinc-finger domain
Petraglia F, Singh AA, Carafa V, Nebbioso A, Conte M, Scisciola L, Valente S, Baldi A, Mandoli A, Petrizzi VB, Ingenito C, De Falco S, Cicatiello V, Apicella I, Janssen-megens EM, Kim B, Yi G, Logie C, Heath S, Ruvo M, Wierenga ATJ, Flicek P, Yaspo ML, Della Valle V, Bernard O, Tomassi S, Novellino E, Feoli A, Sbardella G, Gut I, Vellenga E, Stunnenberg HG, Mai A, Martens JHA, Altucci L * Combined HAT/EZH2 modulation leads to cancer-selective cell death(284 views) Oncotarget (ISSN: 1949-2553electronic, 1949-2553linking), 2018 May 22; 9(39): 25630-25646. Impact Factor:5.008 ViewExport to BibTeXExport to EndNote