The Collagen Binding Domain of Gelatinase A Modulates Degradation of Collagen IV by Gelatinase(460 views) Gioia M, Monaco S, Van Den Steen PE, Sbardella D, Grasso G, Marini S, Overall CM, Opdenakker G, Coletta M
Keywords: Collagen Binding Domain, Gelatinase B, Kinetics, Matrix Metalloproteinases, Type Iv Collagen Fragmentation, Collagen Type 4, Fibronectin, Matrix Metalloproteinase Inhibitor, Analytic Method, Article, Binding Site, Catalysis, Cell Migration, Collagen Degradation, Conformational Transition, Controlled Study, Edman Sequencing, Enzyme Activity, Human, Human Cell, Mass Spectrometry, Neutrophil, Placenta, Priority Journal, Protein Binding, Protein Degradation, Protein Domain, Surface Plasmon Resonance, Environmental Monitoring, Peptides, Protein Interaction Mapping, Sequence Analysis, Temperature,
Affiliations: *** IBB - CNR ***
Department of Experimental Medicine and Biochemical Sciences, University of Roma Tor Vergata, Via Montpellier 1, I-00133 Rome, Italy
Department of Oral Biological and Medical Sciences, Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T1Z3, Canada
Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T1Z3, Canada
Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, P.za Umberto I 1, I-70100 Bari, Italy
Rega Institute for Medical Research, Laboratory of Immunobiology, University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
Department of Chemistry, University of Catania, V.le A. Doria, Catania, Italy
Institute of Biostructure and Bioimaging, CNR, V.le A. Doria, Catania, Italy
References: Overall, C.M., Blobel, C.P., In search of partners: linking extracellular proteases to substrates (2007) Nat. Rev. Mol. Cell Biol., 8, pp. 245-25
Sternlicht, M.D., Werb, Z., How matrix metalloproteinases regulate cell behavior (2001) Annu. Rev. Cell Dev. Biol., 17, pp. 463-516
Allan, J.A., Docherty, A.J., Barker, P.J., Huskisson, N.S., Reynolds, J.J., Murphy, G., Binding of gelatinases A and B to type-I collagen and other matrix components (1995) Biochem. J., 309, pp. 299-306
Van den Steen, P.E., Van Aelst, I., Hvidberg, V., Piccard, H., Fiten, P., Jacobsen, C., The hemopexin and O-glycosylated domains tune gelatinase B/MMP9 bioavailability via inhibition and binding to cargo receptors (2006) J. Biol. Chem., 281, pp. 18626-18637
Bachmeier, B.E., Iancu, C.M., Jocum, M., Nerlich, A.G., Matrix metalloproteinases in cancer: comparison of known and novel aspects of their inhibition as a therapeutic approach (2005) Exp. Rev. Anticancer Ther., 5, pp. 149-163
Mook, O.R., Frederiks, W.M., Van Noorden, J., The role of gelatinases in colorectal cancer progression and metastasis (2004) Biochim. Biophys. Acta, 1705, pp. 69-89
Strongin, A.Y., Collier, I., Bannikov, G., Marmer, B.L., Grant, G.A., Goldberg, G.I., Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease (1995) J. Biol. Chem., 270, pp. 5331-5338
Seiki, M., Membrane-type matrix metalloproteinases (1999) Acta Pathol., Microbiol. Immunol. Scand., 107, pp. 137-143
Ramos-DeSimone, N., Hahn-Dantona, E., Sipley, J., Nagase, H., French, D.L., Quigley, J.P., Activation of matrix metalloproteinase-9 (MMP9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion (1999) J. Biol. Chem., 274, pp. 13066-13076
Opdenakker, G., Van den Steen, P.E., Van Damme, J., Gelatinase B: a tuner and amplifier of immune functions (2001) Trends Immunol., 22, pp. 571-579
Robinson, S.N., Pisarev, V.M., Chavez, J.M., Singh, R.K., Talmadge, J.E., Use of matrix metalloproteinase MMP9 knockout mice demonstrates that MMP9 activity is not absolutely required for G-CSF or Flt-3 ligand-induced hematopoietic progenitor cell mobilization or engraftment (2003) Stem Cells, 21, pp. 417-427
Asahi, M., Sumii, T., Fini, M.E., Itohara, S., Lo, E.H., Matrix metalloproteinase 2 gene knockout has no effect on acute brain injury after focal ischemia (2001) NeuroReport, 12, pp. 3003-3007
Itoh, T., Ikeda, T., Gomi, H., Nakao, S., Suzuki, T., Itohara, S., Unaltered secretion of beta-amyloid precursor protein in gelatinase A (matrix metalloproteinase 2)-deficient mice (1997) J. Biol. Chem., 272, pp. 22389-22392
Leclercq, A., Houard, X., Philippe, M., Ollivier, V., Sebbag, U., Meilhac, O., Michel, J.B., Involvement of intraplaque hemorrhage in atherothrombosis evolution via neutrophil protease enrichment (2007) J. Leukocyte Biol., 82, pp. 1420-1429
Reichel, C.A., Rehberg, M., Bihari, P., Moser, C.M., Linder, S., Khandaga, A., Krombach, F., Gelatinases mediate neutrophil recruitment in vivo: evidence for stimulus specificity and a critical role in collagen IV remodelling (2008) J. Leukocyte Biol., 83, pp. 864-874
Kühn, K., Basement membrane (type IV) collagen (1995) Matrix Biol., 14, pp. 439-445
Prockop, D.J., Kivirikko, K.I., Collagens: molecular biology, diseases, and potentials for therapy (1995) Annu. Rev. Biochem., 64, pp. 403-434
Dolz, R., Engel, J., Kühn, K., Folding of collagen IV (1988) Eur. J. Biochem., 178, pp. 357-366
Timpl, R., Wiedemann, H., van Delden, V., Furthmayr, H., Kühn, K., A network model for the organization of type IV collagen molecules in basement membranes (1981) Eur. J. Biochem., 120, pp. 203-211
Timpl, R., Structure and biological activity of basement membrane proteins (1989) Eur. J. Biochem., 180, pp. 487-502
Paulsson, M., Basement membrane proteins: structure, assembly, and cellular interactions (1992) Crit. Rev. Biochem. Mol. Biol., 27, pp. 93-127
Kühn, K., Wiedemann, H., Timpl, R., Risteli, J., Dieringer, H., Voss, T., Glanville, R.W., Macromolecular structure of basement membrane collagens (1981) FEBS Lett., 125, pp. 123-128
Kalluri, R., Basement membranes: structure, assembly and role in tumour angiogenesis (2003) Nat. Rev. Cancer, 3, pp. 422-433
Hamano, Y., Zeisberg, M., Sugimoto, H., Lively, J.C., Maeshima, Y., Yang, C., Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP9 proteolysis and suppress angiogenesis via alphaVβ3 integrin (2003) Cancer Cell, 3, pp. 589-601
Hamano, Y., Kalluri, R., Tumstatin, the NC1 domain of alpha3 chain of type IV collagen, is an endogenous inhibitor of pathological angiogenesis and suppresses tumor growth (2005) Biochem. Biophys. Res. Commun., 29, pp. 292-298
Kamphaus, G.D., Colorado, P.C., Panka, D.J., Hopfer, H., Ramchandran, R., Torre, A., Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth (2000) J. Biol. Chem., 275, pp. 1209-1215
Lauer-Fields, J.L., Cudic, M., Wei, S., Mari, F., Fields, G.B., Brew, K., Engineered sarafotoxins as tissue inhibitor of metalloproteinases-like matrix metalloproteinase inhibitors (2007) J. Biol. Chem., 282, pp. 26948-26955
Steffensen, B., Wallon, U.M., Overall, C.M., Extracellular matrix binding properties of recombinant fibronectin type II-like modules of human 72-kDa gelatinase/type IV collagenase. High affinity binding to native type I collagen but not native type IV collagen (1995) J. Biol. Chem., 270, pp. 11555-11566
Tam, E.M., Moore, T.R., Butler, G.S., Overall, C.M., Characterization of the distinct collagen binding, helicase and cleavage mechanisms of matrix metalloproteinase 2 and 14 (gelatinase A and MT1-MMP): the differential roles of the MMP hemopexin C domains and the MMP2 fibronectin type II modules in collagen triple helicase activities (2004) J. Biol. Chem., 279, pp. 43336-43344
Xu, X., Chen, Z., Wang, Y., Yamada, Y., Steffensen, B., Functional basis for the overlap in ligand interactions and substrate specificities of matrix metalloproteinases-9 and -2 (2005) Biochem. J., 392, pp. 127-134
Xu, X., Wang, Y., Lauer-Fields, J.L., Fields, G.B., Steffensen, B., Contributions of the MMP2 collagen binding domains to gelatin cleavage. Substrate binding via the collagen binding domain is required for hydrolysis of gelatin but not short peptides (2004) Matrix Biol., 23, pp. 171-181
Gioia, M., Monaco, S., Fasciglione, G.F., Coletti, A., Modesti, A., Marini, S., Coletta, M., Characterization of the mechanisms by which gelatinase A, neutrophil collagenase, and membrane-type metalloproteinase MMP14 recognize collagen I and enzymatically process the two alpha-chains (2007) J. Mol. Biol., 368, pp. 1101-1113
Mackay, A.R., Hartzler, J.L., Pelina, M.D., Thorgeirsson, U.P., Studies on the ability of 65-kDa and 92-kDa tumor cell gelatinases to degrade type IV collagen (1990) J. Biol. Chem., 265, pp. 21929-21934
Monaco, S., Sparano, V., Gioia, M., Sbardella, D., Di Pierro, D., Marini, S., Coletta, M., Enzymatic processing of collagen IV by MMP2 (gelatinase A) affects neutrophil migration and it is modulated by extracatalytic domains (2006) Protein Sci., 15, pp. 2805-2815
Soininen, R., Haka-Risku, T., Prockop, D.J., Tryggvason, K., Complete primary structure of the alpha-1 chain of human basement membrane (type IV) collagen (1987) FEBS Lett., 225, pp. 188-194
Hostikka, S.L.A., Tryggvason, K., Extensive structural differences between genes for the alpha-1 and alpha-2 chains of type IV collagen despite conservation of coding sequences (1987) FEBS Lett., 224, pp. 297-305
Kajimura, D., Takahashi, S., Yoshikawa, K., Hattori, S., Sado, Y., Imamura, Y., Hayashi, T., Non-helical type IV collagen polypeptides in human placenta (2004) Biochem. Biophys. Res. Commun., 314, pp. 11-16
Briknarova, K., Gehrmann, M., Banyai, L., Tordai, H., Patthy, L., Llinas, M., Gelatin-binding region of human matrix metalloproteinase-2: solution structure, dynamics, and function of the COL-23 two-domain construct (2001) J. Biol. Chem., 276, pp. 27613-27621
Ardi, V.C., Kupriyanova, T.A., Deryugina, E.I., Quigley, J.P., Human neutrophils uniquely release TIMP-free MMP9 to provide a potent catalytic stimulator of angiogenesis (2007) Proc. Natl Acad. Sci. USA, 104, pp. 20262-20267
Bergers, G., Brekken, R., McMahon, G., Vu, T.H., Itoh, T., Tamaki, K., Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis (2000) Nat. Cell Biol., 2, pp. 737-744
Itoh, T., Tanioka, M., Yoshida, H., Yoshioka, T., Nishimoto, H., Itohara, S., Reduced angiogenesis and tumor progression in gelatinase A-deficient mice (1998) Cancer Res., 58, pp. 1048-1051
Himelstein, B.P., Canete-Soler, R., Bernhard, E.J., Dilks, D.W., Muschel, R.J., Metalloproteinases in tumor progression: the contribution of MMP9 (1994) Invasion Metastasis, 14, pp. 246-258
Ueda, Y., Imai, K., Tsuchiya, H., Fujimoto, N., Nakanishi, I., Katsuda, S., Matrix metalloproteinase 9 (gelatinase B) is expressed in multinucleated giant cells of human giant cell tumor of bone and is associated with vascular invasion (1996) Am. J. Pathol., 148, pp. 611-622
Ohashi, K., Kawai, R., Hara, M., Okada, Y., Tachibana, S., Ogura, Y., Increased matrix metalloproteinases as possible cause of osteoarticular tissue destruction in long-term haemodyalisis and beta 2-microglobulin amyloidosis (1996) Virchows Arch., 428, pp. 37-46
Vidovszky, T.J., Cabanela, M.E., Rock, M.G., Berry, D.J., Morrey, B.F., Bolander, M.E., Histologic and biochemical differences between osteolytic and nonosteolytic membranes around femoral components of an uncemented total hip arthroplasty (1998) J. Arthroplasty, 13, pp. 320-330
Opdenakker, G., Nelissen, I., van Damme, J., Functional roles and therapeutic targeting of gelatinase B and chemokines in multiple sclerosis (2003) Lancet Neurol., 2, pp. 747-756
Gutiérrez-Fernández, A., Inada, M., Balbín, M., Fueyo, A., Pitiot, A.S., Astudillo, A., Increased inflammation delays wound healing in mice deficient in collagenase-2 (MMP8) (2007) FASEB J., 21, pp. 2580-2591
Longo, G.M., Xiong, W., Greiner, T.C., Zhao, Y., Fiotti, N., Baxter, B.T., Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms (2002) J. Clin. Invest., 110, pp. 625-632
Itoh, T., Matsuda, H., Tanioka, M., Kuwabara, K., Itohara, S., Suzuki, R., The role of matrix metalloproteinase-2 and matrix metalloproteinase-9 in antibody-induced arthritis (2002) J. Immunol., 169, pp. 2643-2647
Tanjore, H., Kalluri, R., The role of type IV collagen and basement membranes in cancer progression and metastasis (2006) Am. J. Pathol., 168, pp. 715-717
Bányai, L., Patthy, L., Evidence for the involvement of type II domains in collagen binding by 72-kDa type IV procollagenase (1991) FEBS Lett., 282, pp. 23-25
Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254
Masure, S., Proost, P., Van Damme, J., Opdenakker, G., Purification and identification of 91-kDa neutrophil gelatinase. Release by the activating peptide interleukin-8 (1991) Eur. J. Biochem., 198, pp. 391-398
Laemmlli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685
Ventzki, R., Rüggeberg, S., Leicht, S., Franz, T., Stegemann, J., Comparative 2-DE protein analysis in a 3-D geometry gel (2007) BioTechniques, 42, pp. 271-275
Ishihama, Y., Rappsilber, J., Mann, M., SCX-Stage tip separation using C18-SCX-C18 Stage tip analyzed by LC-MS (2006) J. Proteome Res., 5, pp. 988-999
Knight, C.G., Willenbrock, F., Murphy, G., A novel coumarin-labelled peptide for sensitive continuous assays of the matrix metalloproteinases (1992) FEBS Lett., 296, pp. 263-266
Wyman Jr., J., Linked functions and reciprocal effects in hemoglobin: a second look (1964) Adv. Protein Chem., 19, pp. 223-286
Ciaccio, C., Tundo, G.R., Grasso, G., Spoto, G., Marasco, D., Ruvo, M. et al. (2009). Somatostatin: a novel substrate and a modulator of insulin-degrading enzyme activity. J. Mol. Biol. In the press. doi:10.1016/j.jmb.2008.11.025Myszka, D.G., Morton, T.A., CLAMP: a biosensor kinetic data analysis program (1998) Trends Biochem. Sci., 23, pp. 149-150
Felkel, C., Schöll, U., Mäder, M., Schwartz, P., Felgenhauer, K., Hardeland, R., Migration of human granulocytes through reconstituted basement membrane is not dependent on matrix metalloproteinase-9 (MMP9) (2001) J. Neuroimmunol., 116, pp. 49-55
Overall, C. M., Blobel, C. P., In search of partners: linking extracellular proteases to substrates (2007) Nat. Rev. Mol. Cell Biol., 8, pp. 245-25
Sternlicht, M. D., Werb, Z., How matrix metalloproteinases regulate cell behavior (2001) Annu. Rev. Cell Dev. Biol., 17, pp. 463-516
Allan, J. A., Docherty, A. J., Barker, P. J., Huskisson, N. S., Reynolds, J. J., Murphy, G., Binding of gelatinases A and B to type-I collagen and other matrix components (1995) Biochem. J., 309, pp. 299-306
Van den Steen, P. E., Van Aelst, I., Hvidberg, V., Piccard, H., Fiten, P., Jacobsen, C., The hemopexin and O-glycosylated domains tune gelatinase B/MMP9 bioavailability via inhibition and binding to cargo receptors (2006) J. Biol. Chem., 281, pp. 18626-18637
Bachmeier, B. E., Iancu, C. M., Jocum, M., Nerlich, A. G., Matrix metalloproteinases in cancer: comparison of known and novel aspects of their inhibition as a therapeutic approach (2005) Exp. Rev. Anticancer Ther., 5, pp. 149-163
Mook, O. R., Frederiks, W. M., Van Noorden, J., The role of gelatinases in colorectal cancer progression and metastasis (2004) Biochim. Biophys. Acta, 1705, pp. 69-89
Strongin, A. Y., Collier, I., Bannikov, G., Marmer, B. L., Grant, G. A., Goldberg, G. I., Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease (1995) J. Biol. Chem., 270, pp. 5331-5338
Robinson, S. N., Pisarev, V. M., Chavez, J. M., Singh, R. K., Talmadge, J. E., Use of matrix metalloproteinase MMP9 knockout mice demonstrates that MMP9 activity is not absolutely required for G-CSF or Flt-3 ligand-induced hematopoietic progenitor cell mobilization or engraftment (2003) Stem Cells, 21, pp. 417-427
Reichel, C. A., Rehberg, M., Bihari, P., Moser, C. M., Linder, S., Khandaga, A., Krombach, F., Gelatinases mediate neutrophil recruitment in vivo: evidence for stimulus specificity and a critical role in collagen IV remodelling (2008) J. Leukocyte Biol., 83, pp. 864-874
K hn, K., Basement membrane (type IV) collagen (1995) Matrix Biol., 14, pp. 439-445
Prockop, D. J., Kivirikko, K. I., Collagens: molecular biology, diseases, and potentials for therapy (1995) Annu. Rev. Biochem., 64, pp. 403-434
K hn, K., Wiedemann, H., Timpl, R., Risteli, J., Dieringer, H., Voss, T., Glanville, R. W., Macromolecular structure of basement membrane collagens (1981) FEBS Lett., 125, pp. 123-128
Kamphaus, G. D., Colorado, P. C., Panka, D. J., Hopfer, H., Ramchandran, R., Torre, A., Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth (2000) J. Biol. Chem., 275, pp. 1209-1215
Lauer-Fields, J. L., Cudic, M., Wei, S., Mari, F., Fields, G. B., Brew, K., Engineered sarafotoxins as tissue inhibitor of metalloproteinases-like matrix metalloproteinase inhibitors (2007) J. Biol. Chem., 282, pp. 26948-26955
Tam, E. M., Moore, T. R., Butler, G. S., Overall, C. M., Characterization of the distinct collagen binding, helicase and cleavage mechanisms of matrix metalloproteinase 2 and 14 (gelatinase A and MT1-MMP): the differential roles of the MMP hemopexin C domains and the MMP2 fibronectin type II modules in collagen triple helicase activities (2004) J. Biol. Chem., 279, pp. 43336-43344
Mackay, A. R., Hartzler, J. L., Pelina, M. D., Thorgeirsson, U. P., Studies on the ability of 65-kDa and 92-kDa tumor cell gelatinases to degrade type IV collagen (1990) J. Biol. Chem., 265, pp. 21929-21934
Hostikka, S. L. A., Tryggvason, K., Extensive structural differences between genes for the alpha-1 and alpha-2 chains of type IV collagen despite conservation of coding sequences (1987) FEBS Lett., 224, pp. 297-305
Ardi, V. C., Kupriyanova, T. A., Deryugina, E. I., Quigley, J. P., Human neutrophils uniquely release TIMP-free MMP9 to provide a potent catalytic stimulator of angiogenesis (2007) Proc. Natl Acad. Sci. USA, 104, pp. 20262-20267
Himelstein, B. P., Canete-Soler, R., Bernhard, E. J., Dilks, D. W., Muschel, R. J., Metalloproteinases in tumor progression: the contribution of MMP9 (1994) Invasion Metastasis, 14, pp. 246-258
Vidovszky, T. J., Cabanela, M. E., Rock, M. G., Berry, D. J., Morrey, B. F., Bolander, M. E., Histologic and biochemical differences between osteolytic and nonosteolytic membranes around femoral components of an uncemented total hip arthroplasty (1998) J. Arthroplasty, 13, pp. 320-330
Guti rrez-Fern ndez, A., Inada, M., Balb n, M., Fueyo, A., Pitiot, A. S., Astudillo, A., Increased inflammation delays wound healing in mice deficient in collagenase-2 (MMP8) (2007) FASEB J., 21, pp. 2580-2591
Longo, G. M., Xiong, W., Greiner, T. C., Zhao, Y., Fiotti, N., Baxter, B. T., Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms (2002) J. Clin. Invest., 110, pp. 625-632
B nyai, L., Patthy, L., Evidence for the involvement of type II domains in collagen binding by 72-kDa type IV procollagenase (1991) FEBS Lett., 282, pp. 23-25
Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254
Laemmlli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685
Ventzki, R., R ggeberg, S., Leicht, S., Franz, T., Stegemann, J., Comparative 2-DE protein analysis in a 3-D geometry gel (2007) BioTechniques, 42, pp. 271-275
Knight, C. G., Willenbrock, F., Murphy, G., A novel coumarin-labelled peptide for sensitive continuous assays of the matrix metalloproteinases (1992) FEBS Lett., 296, pp. 263-266
Felkel, C., Sch ll, U., M der, M., Schwartz, P., Felgenhauer, K., Hardeland, R., Migration of human granulocytes through reconstituted basement membrane is not dependent on matrix metalloproteinase-9 (MMP9) (2001) J. Neuroimmunol., 116, pp. 49-55
The Collagen Binding Domain of Gelatinase A Modulates Degradation of Collagen IV by Gelatinase