Spectroscopic and crystallographic characterization of bis-histidyl adducts in tetrameric hemoglobins(426 views) Vergara A, Vitagliano L, Verde C, di Prisco G, Mazzarella L
Keywords: Fish Protein, Heme, Hemoglobin, Drug Derivative, Hemoprotein, Histidine, Crystal Structure, Crystallography, Electron Spin Resonance, Molecular Model, Priority Journal, Protein Analysis, Protein Function, Protein Structure, Raman Spectrometry, Review, Spectroscopy, Structure Analysis, Three Dimensional Imaging, Animal, Antarctica, Chemical Structure, Chemistry, Crystallization, Electricity, Hemichrome, Protein Quaternary Structure, Spectrophotometry, Vertebrata, Antarctic Regions, Electrostatics, Hemeproteins,
Affiliations: *** IBB - CNR ***
Department of Chemistry and Consorzio Bioteknet, University of Naples Federico II, Naples, Italy
Institute of Biostructures and Bioimaging, CNR, Naples, Italy
Institute of Protein Biochemistry, CNR, Naples, Italy
References: Ajloo, D., Moosavi-Movahedi, A.A., Hakimelahi, G.H., Saboury, A.A., Gharibi, H., The effect of dodecyl trimethylammonium bromide on the formation of methemoglobins and hemichrome (2002) Coll. Surf. B: Biointerfaces, 26, pp. 185-19
Amadei, A., Marinelli, F., D'Abramo, M., D'Alessandro, M., Anselmi, M., Di Nola, A., Aschi, M., Theoretical modeling of vibroelectronic quantum states in complex molecular systems: Solvated carbon monoxide, a test case (2005) J. Chem. Phys., 122, pp. 124506/1-124506/10
Arnold, E.V., Bohle, D.S., Jordan, P.A., Reversible and irreversible hemichrome generation by the oxygenation of nitrosylmyoglobin (1999) Biochemistry, 38, pp. 4750-4756
Bikiel, D.E., Boechi, L., Capece, L., Crespo, A., De Biase, P.M., Di Lella, S., GonzalezLebrero, M.C., Estrin, D.A., Modeling heme proteins using atomistic simulations (2006) Phys. Chem. Chem. Phys., 8, pp. 5611-5628
Blumberg, W.E., Peisach, J., Low-spin ferric forms of hemoglobin and other heme proteins (1972) Wenner-Gren Center International Symposium Series, 18, pp. 219-225
Boffi, A., Takahashi, S., Spagnuolo, C., Rousseau, D.L., Chiancone, E., Structural characterization of oxidized dimeric Scapharca inaequivalvis hemoglobin by resonance Raman spectroscopy (1994) J. Biol. Chem., 269, pp. 20437-20440
Brittain, T., The Root effect in hemoglobins (2005) J. Inorg. Biochem., 99, pp. 120-129
Camardella, L., Caruso, C., D'Avino, R., di Prisco, G., Rutigliano, B., Tamburrini, M., Fermi, G., Perutz, M.F., Hemoglobin of the Antarctic fish Pagothenia bernacchii: Amino acid sequence, oxygen equilibria and crystal structure of its carbonmonoxy derivative (1992) J. Mol. Biol., 224, pp. 449-460
Carey, P.R., Raman crystallography and other biochemical applications of Raman microscopy (2006) Annu. Rev. Phys. Chem., 57, pp. 527-554
Couture, M., Das, T.K., Lee, H.C., Peisach, J., Rousseau, D.L., Wittenberg, B.A., Wittenberg, J.B., Guertin, M., Chlamydomonas chloroplast ferrous hemoglobin: Heme pocket structure and reactions with ligands (1999) J. Biol. Chem., 274, pp. 6898-6910
Croci, S., Pedrazzi, G., Passeri, G., Piccolo, P., Ortalli, I., Acetylphenylhydrazine induced haemoglobin oxidation in erythrocytes studied by Mossbauer spectroscopy (2001) Biochim. Biophys. Acta, 1568, pp. 99-104
de Sanctis, D., Pesce, A., Nardini, M., Bolognesi, M., Bocedi, A., Ascenzi, P., Structure-function relationships in the growing hexa-coordinate hemoglobin sub-family (2004) IUBMB Life, 56, pp. 643-651
de Sanctis, D., Dewilde, S., Pesce, A., Moens, L., Ascenzi, P., Hankeln, T., Burmester, T., Bolognesi, M., Crystal structure of cytoglobin: The fourth globin type discovered in man displays heme hexa-coordination (2004) J. Mol. Biol., 336, pp. 917-927
di Prisco, G., Giardina, B., D'Avino, R., Condo, S.G., Bellelli, A., Brunori, M., Antarctic fish hemoglobin: An outline of the molecular structure and oxygen binding properties: II. Oxygen binding properties (1988) Comp. Biochem. Physiol. B, 90, pp. 585-591
Egawa, T., Yeh, S., Structural and functional properties of hemoglobins from unicellular organism as revealed by resonance Raman spectroscopy (2004) J. Inorg. Biochem., 99, pp. 72-76
Everson, I., Ralph, R., Blood analyses of some Antarctic fish (1968) Br. Antarctic Surv. Bull., 15, pp. 59-62
Feis, A., Marzocchi, M.P., Paoli, M., Smulevich, G., Spin state and axial ligand bonding in the hydroxide complexes of metmyoglobin, methemoglobin, and horseradish peroxidase at room and low temperatures (1994) Biochemistry, 33, pp. 4577-4583
Feng, L., Zhou, S., Gu, L., Gell, D., Mackay, J., Weiss, M., Gow, A., Shi, Y., Structure of oxidized a-haemoglobin bound to AHSP reveals a protective mechanism for haem (2005) Nature, 435, pp. 697-701
Feng, M., Tachikawa, H., Raman spectroscopic and electrochemical characterization of myoglobin thin film: Implication of the role of Histidine 64 for fast heterogeneous electron transfer (2001) J. Am. Chem. Soc., 123, pp. 3013-3020
Hargrove, M.S., Brucker, E.A., Stec, B., Sarath, G., Arredondo-Peter, R., Klucas, R.V., Olson, J.S., Phillips, G.N., Crystal structure of a nonsymbiotic plant hemoglobin (2000) Structure, 8, pp. 1005-1014
Hoy, J.A., Kundu, S., Trent III, J.T., Ramaswamy, S., Hargrove, M.S., The crystal structure of Synechocystis hemoglobin with a covalent heme linkage (2004) J. Biol. Chem., 279, pp. 16535-16542
Ilari, A., Bonamore, A., Farina, A., Johnson, K., Boffi, A., The X-ray structure of ferric Escherichia coli flavohemoglobin reveals an unexpected geometry of the distal heme pocket (2002) J. Biol. Chem., 26, pp. 23725-23732
Ioanitescu, A.I., Dewilde, S., Kiger, L., Marden, C.M., Moens, L., Van Doorslaer, S., Characterization of nonsymbiotic tomato hemoglobin (2005) Biophys. J., 89, pp. 2628-2639
Ito, N., Komiyama, N.H., Fermi, G., Structure of deoxyhemoglobin of the Antarctic fish Pagothenia bernacchii with an analysis of the structural basis of the root effect by comparison of the liganded and unliganded hemoglobin structures (1995) J. Mol. Biol., 250, pp. 648-658
Jeong, S.T., Ho, N.T., Hendrich, M.P., Ho, C., Recombinant hemoglobin (a29Leucine → Phenylalanine, a96Valine → Tryptophan, b108Asparagine → Lysine) exhibits low oxygen affinity and high cooperativity combined with resistance to autoxidation (1999) Biochemistry, 38, pp. 13433-13442
Kraulis, P.J., MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures (1991) J. Appl. Crystallogr., 24, pp. 946-950
Marmo Moreira, L., Lima Poli, A., Costa-Filho, A.J., Imasato, H., Pentacoordinate and hexacoordinate ferric hemes in acid medium: EPR, UV-Vis and CD studies of the giant extracellular hemoglobin of Glossoscolex paulistus (2006) Biophys. Chem., 124, pp. 62-72
Marzocchi, M.P., Smulevich, G., Relationship between heme vinyl conformation and the protein matrix in peroxidases (2003) J. Raman Spectr., 34, pp. 725-736
Mazzarella, L., Vergara, A., Vitagliano, L., Merlino, A., Bonomi, G., Scala, S., Verde, C., di Prisco, G., High resolution crystal structure of deoxy hemoglobin from Trematomus bernacchii at different pH values: The role of histidine residues in modulating the strength of the Root effect (2006) Proteins, 65, pp. 490-498
Mazzarella, L., Bonomi, G., Lubrano, M.C., Merlino, A., Vergara, A., Vitagliano, L., Verde, C., di Prisco, G., Minimal structural requirement of Root effect: Crystal structure of the cathodic hemoglobin isolated from Trematomus newnesi (2006) Proteins, 62, pp. 316-321
Mazzarella, L., D'Avino, R., di Prisco, G., Savino, C., Vitagliano, L., Moody, P.C.E., Zagari, A., Crystal structure of Trematomus newnesi hemoglobin re-opens the Root effect question (1999) J. Mol. Biol., 287, pp. 897-906
Milani, M., Pesce, A., Nardini, M., Ouellet, H., Ouellet, Y., Dewilde, S., Bocedi, A., Bolognesi, M., Structural bases for heme binding and diatomic ligand recognition in truncated hemoglobins (2005) J. Inorg. Biochem., 99, pp. 97-109
Mitchell, D.T., Kitto, G.B., Hackert, M.L., Structural analysis of monomeric hemichrome and dimeric cyanomet hemoglobins from Caudina arenicola (1995) J. Mol. Biol., 251, pp. 421-431
Mitchell, D.T., Ernst, S.R., Wu, W.-X., Hackert, M.L., Three-dimensional structure of a hemichrome hemoglobin from Caudina arenicola (1995) Acta Crystallogr. D, 51, pp. 647-653
Nagai, M., Aki, M., Li, R., Jin, Y., Sakai, H., Nagatomo, S., Kitagawa, T., Heme structure of hemoglobin M Iwate [R87(F8)HisfTyr]: A UV and visible resonance Raman study (2000) Biochemistry, 39, pp. 13083-13105
Palmer, G., The electron paramagnetic resonance of metalloproteins (1985) Biochem. Soc. Trans., 13, pp. 548-560
Pesce, A., Dewilde, S., Nardini, M., Moens, L., Ascenzi, P., Hankeln, T., Burmester, T., Bolognesi, T., Human brain neuroglobin three-dimensional structure (2003) Structure, 11, p. 1087
Pesce, A., De Sanctis, D., Nardini, M., Dewilde, S., Moens, L., Hankeln, T., Burmester, T., Bolognesi, M., Reversible hexa- to penta-coordination of the heme Fe atom modulates ligand binding properties of neuroglobin and cytoglobin (2004) IUBMB Life, 56, pp. 657-664
Rachmilewitz, E.A., Peisach, J., Blumberg, W.E., Stability of oxyhemoglobin A and its constituent chains and their derivatives (1971) J. Biol. Chem., 246, pp. 3356-3366
Ray, A., Friedman, B.A., Friedman, J.M., Trehalose glass-facilitated thermal reduction of metmyoglobin and methemoglobin (2002) J. Am. Chem. Soc., 124, pp. 7270-7271
Riccio, A., Vitagliano, L., di Prisco, G., Zagari, A., Mazzarella, L., Liganded and unliganded forms of Antarctic fish haemoglobins in polyethylene glycol: Crystallization of an R-state haemichrome intermediate (2001) Acta Crystallogr. D, 57, pp. 1144-1146
Rifkind, J.M., Abugo, O., Levy, A., Heim, J.M., Detection, formation, and relevance of hemichrome and hemochrome (1994) Methods Enzymol., 231, pp. 449-480
Riggs, A., The Bohr effect (1988) Annu. Rev. Physiol., 50, pp. 181-204
Robinson, V.L., Smith, B.B., Arnone, A., A pH-dependent aquomet-to-hemichrome transition in crystalline horse methemoglobin (2003) Biochemistry, 42, pp. 10113-10125
Ruud, J.T., Vertebrates without erythrocytes and blood pigment (1954) Nature, 173, pp. 848-850
Sawai, H., Makino, M., Mizutani, Y., Ohta, T., Hiroshi, S., Uno, T., Kawada, N., Shiro, Y., Structural characterization of the proximal and distal histidine environment of cytoglobin and neuroglobin (2005) Biochemistry, 44, pp. 13257-13265
Sidell, B.D., O'Brien, K.M., When bad thing happen to good fish: The loss of hemoglobin and myoglobin expression in Antarctic icefishes (2006) J. Exp. Biol., 209, pp. 1791-1802
Smulevich, G., Understanding heme cavity structure of peroxidases: Comparison of electronic absorption and resonance Raman spectra with crystallographic results (1998) Biospectr., 4, pp. S3-S17
Smulevich, G., Feis, A., Howes, B.D., Fifteen years of Raman spectroscopy of engineered heme containing peroxidases: What have we learned? (2005) Acc. Chem. Res., 38, pp. 433-440
Smulevich, G., Wang, Y., Mauro, J.M., Wang, J., Fishel, L.A., Kraut, J., Spiro, T.G., Single-crystal resonance Raman spectroscopy of site-directed mutants of cytochrome c peroxidase (1990) Biochemistry, 29, pp. 7174-7180
Svistunenko, D.A., Sharpe, M.A., Nicholls, P., Blenkinsop, C., Davies, N.A., Dunne, J., Wilson, M.T., Cooper, C.E., The pH dependence of naturally occurring low-spin forms of methaemoglobin and metmyoglobin: An EPR study (2000) Biochem. J., 351, pp. 595-605
Tsuruga, M., Matsuoka, A., Hachimori, Y., Sugawara, Y., Shikama, K., The molecular mechanism of autoxidation for human oxyhemoglobin (1998) J. Biol. Chem., 273, pp. 8607-8615
Vallone, B., Nienhaus, K., Matthes, K., Brunori, M., Nienhaus, G., The structure of murine neuroglobin: Novel pathways for ligand migration and binding (2004) Proteins, 56, pp. 85-92
Verde, C., Howes, B.D., de Rosa, M.C., Raiola, L., Smulevich, G., Williams, R., Giardina, B., di Prisco, G., Structure and function of the Gondwanian hemoglobin of Pseudaphritis urvillii, a primitive notothenioid fish of temperate latitudes (2004) Prot. Sci., 13, pp. 2766-2781
Verde, C., Parisi, E., di Prisco, G., The evolution of thermal adaptation in polar fish (2006) Gene, 385, pp. 137-145
Verde, C., Vergara, A., Parisi, E., Giordano, D., Mazzarella, L., di Prisco, G., The Root effect: A structural and evolutionary perspective (2007) Antarctic Sci., 19. , in press
Vergara, A., Frazese, M., Merlino, A., Vitagliano, L., Verde, C., di Prisco, G., Lee, H.C., Mazzarella, L., Structural characterization of ferric hemoglobins from three Antarctic fish species of the suborder Notothenioidei (2007) Biophys. J., 93, pp. 2822-2829
Vitagliano, L., Bonomi, G., Riccio, A., di Prisco, G., Smulevich, G., Mazzarella, L., The oxidation process of Antarctic fish hemoglobins (2004) Eur. J. Biochem., 271, pp. 1651-1659
Walker, F.A., Models of the bis-Histidine-ligated electron-transferring cytochromes. Comparative geometric and electronic structure of low-spin ferro- and ferrihemes (2004) Chem. Rev., 104, pp. 589-615
Walker, F.A., Reis, D., Balke, V.L., Models of the cytochromes b. 5. EPR studies of low-spin iron(III) tetraphenylporphyrins (1984) J. Am. Chem. Soc., 106, pp. 6888-6898
Weber, R.E., Vinogradov, S.N., Nonvertebrate hemoglobins: Functions and molecular adaptations (2001) Physiol. Rev., 81, pp. 569-628
Weiland, T.R., Kundu, S., Trent III, J.T., Hoy, J.A., Hargrove, M.S., Bis-histidyl hexacoordination in hemoglobins facilitates heme reduction kinetics (2004) J. Am. Chem. Soc., 126, pp. 11930-11935
Wells, R.M.G., Macdonald, J.A., di Prisco, G., Thin-blooded Antarctic fishes: A rheological comparison of the hemoglobin-free icefishes Chionodraco kathleenae and Cryodraco antarcticus with a red-blooded notothenioid, Pagothenia bernacchii (1990) J. Fish Biol., 36, pp. 595-609
Wells, R.M.G., Ashby, M.D., Duncan, S.J., MacDonald, J.A., Comparative studies of the erythrocytes and haemoglobins in notothenioid fishes from Antarctica (1980) J. Fish. Biol., 17, pp. 517-527
Arnold, E. V., Bohle, D. S., Jordan, P. A., Reversible and irreversible hemichrome generation by the oxygenation of nitrosylmyoglobin (1999) Biochemistry, 38, pp. 4750-4756
Bikiel, D. E., Boechi, L., Capece, L., Crespo, A., De Biase, P. M., Di Lella, S., GonzalezLebrero, M. C., Estrin, D. A., Modeling heme proteins using atomistic simulations (2006) Phys. Chem. Chem. Phys., 8, pp. 5611-5628
Blumberg, W. E., Peisach, J., Low-spin ferric forms of hemoglobin and other heme proteins (1972) Wenner-Gren Center International Symposium Series, 18, pp. 219-225
Carey, P. R., Raman crystallography and other biochemical applications of Raman microscopy (2006) Annu. Rev. Phys. Chem., 57, pp. 527-554
Hargrove, M. S., Brucker, E. A., Stec, B., Sarath, G., Arredondo-Peter, R., Klucas, R. V., Olson, J. S., Phillips, G. N., Crystal structure of a nonsymbiotic plant hemoglobin (2000) Structure, 8, pp. 1005-1014
Hoy, J. A., Kundu, S., Trent III, J. T., Ramaswamy, S., Hargrove, M. S., The crystal structure of Synechocystis hemoglobin with a covalent heme linkage (2004) J. Biol. Chem., 279, pp. 16535-16542
Ioanitescu, A. I., Dewilde, S., Kiger, L., Marden, C. M., Moens, L., Van Doorslaer, S., Characterization of nonsymbiotic tomato hemoglobin (2005) Biophys. J., 89, pp. 2628-2639
Jeong, S. T., Ho, N. T., Hendrich, M. P., Ho, C., Recombinant hemoglobin (a29Leucine Phenylalanine, a96Valine Tryptophan, b108Asparagine Lysine) exhibits low oxygen affinity and high cooperativity combined with resistance to autoxidation (1999) Biochemistry, 38, pp. 13433-13442
Kraulis, P. J., MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures (1991) J. Appl. Crystallogr., 24, pp. 946-950
Marzocchi, M. P., Smulevich, G., Relationship between heme vinyl conformation and the protein matrix in peroxidases (2003) J. Raman Spectr., 34, pp. 725-736
Merritt, E. A., Bacon, D. J., Raster3D: Photorealistic molecular graphics (1997) Methods Enzymol., 277, pp. 505-524
Mitchell, D. T., Kitto, G. B., Hackert, M. L., Structural analysis of monomeric hemichrome and dimeric cyanomet hemoglobins from Caudina arenicola (1995) J. Mol. Biol., 251, pp. 421-431
Mitchell, D. T., Ernst, S. R., Wu, W. -X., Hackert, M. L., Three-dimensional structure of a hemichrome hemoglobin from Caudina arenicola (1995) Acta Crystallogr. D, 51, pp. 647-653
Rachmilewitz, E. A., Peisach, J., Blumberg, W. E., Stability of oxyhemoglobin A and its constituent chains and their derivatives (1971) J. Biol. Chem., 246, pp. 3356-3366
Rifkind, J. M., Abugo, O., Levy, A., Heim, J. M., Detection, formation, and relevance of hemichrome and hemochrome (1994) Methods Enzymol., 231, pp. 449-480
Robinson, V. L., Smith, B. B., Arnone, A., A pH-dependent aquomet-to-hemichrome transition in crystalline horse methemoglobin (2003) Biochemistry, 42, pp. 10113-10125
Ruud, J. T., Vertebrates without erythrocytes and blood pigment (1954) Nature, 173, pp. 848-850
Sidell, B. D., O'Brien, K. M., When bad thing happen to good fish: The loss of hemoglobin and myoglobin expression in Antarctic icefishes (2006) J. Exp. Biol., 209, pp. 1791-1802
Svistunenko, D. A., Sharpe, M. A., Nicholls, P., Blenkinsop, C., Davies, N. A., Dunne, J., Wilson, M. T., Cooper, C. E., The pH dependence of naturally occurring low-spin forms of methaemoglobin and metmyoglobin: An EPR study (2000) Biochem. J., 351, pp. 595-605
Walker, F. A., Models of the bis-Histidine-ligated electron-transferring cytochromes. Comparative geometric and electronic structure of low-spin ferro- and ferrihemes (2004) Chem. Rev., 104, pp. 589-615
Walker, F. A., Reis, D., Balke, V. L., Models of the cytochromes b. 5. EPR studies of low-spin iron (III) tetraphenylporphyrins (1984) J. Am. Chem. Soc., 106, pp. 6888-6898
Weber, R. E., Vinogradov, S. N., Nonvertebrate hemoglobins: Functions and molecular adaptations (2001) Physiol. Rev., 81, pp. 569-628
Weiland, T. R., Kundu, S., Trent III, J. T., Hoy, J. A., Hargrove, M. S., Bis-histidyl hexacoordination in hemoglobins facilitates heme reduction kinetics (2004) J. Am. Chem. Soc., 126, pp. 11930-11935
Wells, R. M. G., Macdonald, J. A., di Prisco, G., Thin-blooded Antarctic fishes: A rheological comparison of the hemoglobin-free icefishes Chionodraco kathleenae and Cryodraco antarcticus with a red-blooded notothenioid, Pagothenia bernacchii (1990) J. Fish Biol., 36, pp. 595-609
Wells, R. M. G., Ashby, M. D., Duncan, S. J., MacDonald, J. A., Comparative studies of the erythrocytes and haemoglobins in notothenioid fishes from Antarctica (1980) J. Fish. Biol., 17, pp. 517-527
Spectroscopic and crystallographic characterization of bis-histidyl adducts in tetrameric hemoglobins
Hemoglobins (Hbs) are important proteins devoted to oxygen transport. Hbs carry out their function by keeping the iron atom, which binds the oxygen molecule, in its reduced Fe(II) state. Nonetheless, it is well known that Hbs frequently undergo, even under physiological conditions, spontaneous oxidation. Although these processes have been widely investigated, their role and impact in different biological contexts are still highly debated. In vertebrate Hbs, assembled in alpha(2)beta(2) tetramers, it has traditionally been assumed that oxidized forms endowed with nativelike structures are either aquo-met or hydroxy-met states, depending on the pH of the medium. This view has been questioned by several independent investigations. In the past, indirect evidence of the existence of alternative nativelike oxidized forms was obtained from spectroscopic analyses. Indeed, it was suggested that, in tetrameric Hbs, bis-histidyl hemichrome states could be compatible with folded structures. Recent studies performed by complementing spectroscopic and crystallo-graphic methodologies have provided a detailed picture of hemichrome structure and formation in these proteins. Here we review the methodological approaches adopted to achieve these results, the main structural features of these states, and the current hypotheses on their possible functional implications.
Spectroscopic and crystallographic characterization of bis-histidyl adducts in tetrameric hemoglobins