Effect of scatter correction on the compartmental measurement of striatal and extrastriatal dopamine D2 receptors using [ 123I]epidepride SPET(354 views) Fujita M, Varrone A, Kim KM, Watabe H, Zoghbi SS, Seneca N, Tipre D, Seibyl JP, Innis RB, Iida H
Keywords: Nonlinear Least-Squares Analysis, Ordered Subsets Expectation Maximization, Putamen, Temporal Cortex, Thalamus, Dopamine 2 Receptor, Epidepride I 123, Fallypride F 18, Tracer, Unclassified Drug, Adult, Article, Brain Region, Cerebellum, Controlled Study, Corpus Striatum, Diagnostic Accuracy, Dopaminergic System, Female, Geometry, Human, Human Experiment, Image Analysis, In Vivo Study, Normal Human, Phantom, Protein Localization, Single Photon Emission Computer Tomography, Benzamides, Image Enhancement, Image Interpretation, Computer-Assisted, Iodine Radioisotopes, Metabolic Clearance Rate, Middle Aged, Pyrrolidines, Radiopharmaceuticals, Reproducibility Of Results, Scattering, Radiation, Sensitivity And Specificity, Tissue Distribution,
Affiliations: *** IBB - CNR ***
Department of Psychiatry, Yale University School of Medicine, VA Connecticut Healthcare System, West Haven, CT, United States
Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, United States
Biostructure and Bioimaging Inst., National Research Council, Napoli, Italy
Dept. of Investigative Radiology, Natl. Cardiovasc. Ctr. Res. Inst., Osaka, Japan
Department of Radiology, Yale University School of Medicine, VA Connecticut Healthcare System, West Haven, CT, United States
Inst. for Neurodeg. Disorders, New Haven, CT, United States
Building 1, MSC-0135, United States
References: Kauppinen, T., Koskinen, M.O., Alenius, S., Vanninen, E., Kuikka, J.T., Improvement of brain perfusion SPET using iterative reconstruction with scatter and non-uniform attenuation correction (2000) Eur J Nucl Med, 27, pp. 1380-138
Iida, H., Narita, Y., Kado, H., Kashikura, A., Sugawara, S., Shoji, Y., Kinoshita, T., Eberl, S., Effects of scatter and attenuation correction on quantitative assessment of regional cerebral blood flow with SPECT (1998) J Nucl Med, 39, pp. 181-189
Rajeevan, N., Zubal, I.G., Ramsby, S.Q., Zoghbi, S.S., Seibyl, J., Innis, R.B., Significance of nonuniform attenuation correction in quantitative brain SPECT imaging (1998) J Nucl Med, 39, pp. 1719-1726
Stodilka, R.Z., Kemp, B.J., Msaki, P., Prato, F.S., Nicholson, R.L., The relative contributions of scatter and attenuation corrections toward improved brain SPECT quantification (1998) Phys Med Biol, 43, pp. 2991-3008
Hashimoto, J., Sasaki, T., Ogawa, K., Kubo, A., Motomura, N., Ichihara, T., Amano, T., Fukuuchi, Y., Effects of scatter and attenuation correction on quantitative analysis of beta-CIT brain SPET (1999) Nucl Med Commun, 20, pp. 159-165
Kim, K.M., Varrone, A., Watabe, H., Shidahara, M., Fujita, M., Innis, R.B., Iida, H., Contribution of scatter and attenuation compensation to SPECT images of non-uniformly distributed brain activities (2003) J Nucl Med, 44, pp. 512-519
Soret, M., Koulibaly, P.M., Darcourt, J., Hapdey, S., Buvat, I., Quantitative accuracy of dopaminergic neurotransmission imaging with (123)I SPECT (2003) J Nucl Med, 44, pp. 1184-1193
Ito, H., Iida, H., Kinoshita, T., Hatazawa, J., Okudera, T., Uemura, K., Effects of scatter correction on regional distribution of cerebral blood flow using I-123-IMP and SPECT (1999) Ann Nucl Med, 13, pp. 331-336
Almeida, P., Ribeiro, M.J., Bottlaender, M., Loc'h, C., Langer, O., Strul, D., Hugonnard, P., Bendriem, B., Absolute quantitation of iodine-123 epidepride kinetics using single-photon emission tomography: Comparison with carbon-11 epidepride and positron emission tomography (1999) Eur J Nucl Med, 26, pp. 1580-1588
Kessler, R.M., Mason, N.S., Votaw, J.R., Depaulis, T., Clanton, J.A., Ansari, M.S., Schmidt, D.E., Bell, R.L., Visualization of extrastriatal dopamine D2 receptors in the human brain (1992) Eur J Pharmacol, 223, pp. 105-107
Bressan, R.A., Erlandsson, K., Jones, H.M., Mulligan, R.S., Ell, P.J., Pilowsky, L.S., Optimizing limbic selective D2/D3 receptor occupancy by risperidone: A [123I]-epidepride SPET study (2003) J Clin Psychopharmacol, 23, pp. 5-14
Kuikka, J.T., Repo, E., Bergstrom, K.A., Tupala, E., Tiihonen, J., Specific binding and laterality of human extrastriatal dopamine D 2/D3 receptors in late onset type 1 alcoholic patients (2000) Neurosci Lett, 292, pp. 57-59
Fujita, M., Seibyl, J.P., Verhoeff, N.P.L.G., Ichise, M., Baldwin, R.M., Zoghbi, S.S., Burger, C., Innis, R.B., Kinetic and equilibrium analyses of [123I]epidepride binding to striatal and extrastriatal dopamine D2 receptors (1999) Synapse, 34, pp. 290-304
Hudson, H.M., Larkin, R.S., Accelerated image reconstruction using ordered subsets of projection data (1994) IEEE Trans Med Imaging, 13, pp. 601-609
Jaszczak, R.J., Coleman, R.E., Whitehead, F.R., Physical factors affecting quantitative measurements using camera-based single photon emission computed tomography (SPECT) (1981) IEEE Trans Nucl Sci, 28, pp. 69-80
Kim, K.M., Watabe, H., Shidahara, M., Ishida, Y., Iida, H., SPECT collimator dependency of scatter and validation of transmission-dependent scatter compensation methodologies (2001) IEEE Trans Nucl Sci, 48, pp. 689-696
Narita, Y., Eberl, S., Iida, H., Hutton, B.F., Braun, M., Nakamura, T., Bautovich, G., Monte Carlo and experimental evaluation of accuracy and noise properties of two scatter correction methods for SPECT (1996) Phys Med Biol, 41, pp. 2481-2496
Friston, K.J., Ashburner, J., Poline, J.B., Frith, C.D., Heather, J.D., Frackowiak, R.S.J., Spatial registration and normalisation of images (1995) Human Brain Mapping, 2, pp. 165-189
Ichise, M., Fujita, M., Seibyl, J.P., Verhoeff, N.P., Baldwin, R.M., Zoghbi, S.S., Rajeevan, N., Innis, R.B., Graphical analysis and simplified quantification of striatal and extrastriatal dopamine D2 receptor binding with [ 123I]epidepride SPECT (1999) J Nucl Med, 40, pp. 1902-1912
Bergstrom, K.A., Yu, M., Kuikka, J.T., Akerman, K.K., Hiltunen, J., Lehtonen, J., Halldin, C., Tiihonen, J., Metabolism of [123I]epidepride may affect brain dopamine D2 receptor imaging with single-photon emission tomography (2000) Eur J Nucl Med Mol Imaging, 27, pp. 206-208
Ichise, M., Ballinger, J.R., Golan, H., Vines, D., Luong, A., Tsai, S., Kung, H.F., Noninvasive quantification of dopamine D2 receptors with iodine-123-IBF SPECT (1996) J Nucl Med, 37, pp. 513-520
Burger, C., Mikolajczyk, K., Grodzki, M., Rudnicki, P., Szabatin, M., Buck, A., JAVA tools quantitative post-processing of brain PET data (1998) J Nucl Med, 39, pp. 277P
Carson, R.E., Parameter estimation in positron emission tomography (1986) Positron Emission Tomography and Autoradiography: Principles and Applications for the Brain and Heart, pp. 347-390. , Phelps ME, Mazziotta JC, Schelbert HR, eds. New York: Raven
Bevington, P.R., Robinson, D.K., (2003) Data Reduction and Error Analysis for the Physical Sciences, , New York: McGraw-Hill
Ichise, M., Toyama, H., Innis, R.B., Carson, R.E., Strategies to improve neuroreceptor parameter estimation by linear regression analysis (2002) J Cereb Blood Flow Metab, 22, pp. 1271-1281
Mukherjee, J., Christian, B.T., Dunigan, K.A., Shi, B., Narayanan, T.K., Satter, M., Mantil, J., Brain imaging of 18F-fallypride in normal volunteers: Blood analysis, distribution, test-retest studies, and preliminary assessment of sensitivity to aging effects on dopamine D-2/D-3 receptors (2002) Synapse, 46, pp. 170-188
Carson, R.E., Wu, Y., Lang, L., Ma, Y., Der, M.G., Herscovitch, P., Eckelman, W.C., Brain uptake of the acid metabolites of F-18-labeled WAY 100635 analogs (2003) J Cereb Blood Flow Metab, 23, pp. 249-260
Stodilka, R. Z., Kemp, B. J., Msaki, P., Prato, F. S., Nicholson, R. L., The relative contributions of scatter and attenuation corrections toward improved brain SPECT quantification (1998) Phys Med Biol, 43, pp. 2991-3008
Kim, K. M., Varrone, A., Watabe, H., Shidahara, M., Fujita, M., Innis, R. B., Iida, H., Contribution of scatter and attenuation compensation to SPECT images of non-uniformly distributed brain activities (2003) J Nucl Med, 44, pp. 512-519
Kessler, R. M., Mason, N. S., Votaw, J. R., Depaulis, T., Clanton, J. A., Ansari, M. S., Schmidt, D. E., Bell, R. L., Visualization of extrastriatal dopamine D2 receptors in the human brain (1992) Eur J Pharmacol, 223, pp. 105-107
Bressan, R. A., Erlandsson, K., Jones, H. M., Mulligan, R. S., Ell, P. J., Pilowsky, L. S., Optimizing limbic selective D2/D3 receptor occupancy by risperidone: A [123I] -epidepride SPET study (2003) J Clin Psychopharmacol, 23, pp. 5-14
Kuikka, J. T., Repo, E., Bergstrom, K. A., Tupala, E., Tiihonen, J., Specific binding and laterality of human extrastriatal dopamine D 2/D3 receptors in late onset type 1 alcoholic patients (2000) Neurosci Lett, 292, pp. 57-59
Hudson, H. M., Larkin, R. S., Accelerated image reconstruction using ordered subsets of projection data (1994) IEEE Trans Med Imaging, 13, pp. 601-609
Sorensen, J. A., Phelps, M. E., (1987) Physics in Nuclear Medicine, , Philadelphia: Saunders
Jaszczak, R. J., Coleman, R. E., Whitehead, F. R., Physical factors affecting quantitative measurements using camera-based single photon emission computed tomography (SPECT) (1981) IEEE Trans Nucl Sci, 28, pp. 69-80
Kim, K. M., Watabe, H., Shidahara, M., Ishida, Y., Iida, H., SPECT collimator dependency of scatter and validation of transmission-dependent scatter compensation methodologies (2001) IEEE Trans Nucl Sci, 48, pp. 689-696
Friston, K. J., Ashburner, J., Poline, J. B., Frith, C. D., Heather, J. D., Frackowiak, R. S. J., Spatial registration and normalisation of images (1995) Human Brain Mapping, 2, pp. 165-189
Bergstrom, K. A., Yu, M., Kuikka, J. T., Akerman, K. K., Hiltunen, J., Lehtonen, J., Halldin, C., Tiihonen, J., Metabolism of [123I] epidepride may affect brain dopamine D2 receptor imaging with single-photon emission tomography (2000) Eur J Nucl Med Mol Imaging, 27, pp. 206-208
Carson, R. E., Parameter estimation in positron emission tomography (1986) Positron Emission Tomography and Autoradiography: Principles and Applications for the Brain and Heart, pp. 347-390. , Phelps ME, Mazziotta JC, Schelbert HR, eds. New York: Raven
Bevington, P. R., Robinson, D. K., (2003) Data Reduction and Error Analysis for the Physical Sciences, , New York: McGraw-Hill
Carson, R. E., Wu, Y., Lang, L., Ma, Y., Der, M. G., Herscovitch, P., Eckelman, W. C., Brain uptake of the acid metabolites of F-18-labeled WAY 100635 analogs (2003) J Cereb Blood Flow Metab, 23, pp. 249-260
Effect of scatter correction on the compartmental measurement of striatal and extrastriatal dopamine D2 receptors using [ 123I]epidepride SPET
Prior studies with anthropomorphic phantoms and single, static in vivo brain images have demonstrated that scatter correction significantly improves the accuracy of regional quantitation of single-photon emission tomography (SPET) brain images. Since the regional distribution of activity changes following a bolus injection of a typical neuroreceptor ligand, we examined the effect of scatter correction on the compartmental modeling of serial dynamic images of striatal and extrastriatal dopamine D2 receptors using [123I]epidepride. Eight healthy human subjects [age 30±8 (range 22-46) years] participated in a study with a bolus injection of 373±12 (354-389) MBq [123I]epidepride and data acquisition over a period of 14 h. A transmission scan was obtained in each study for attenuation and scatter correction. Distribution volumes were calculated by means of compartmental nonlinear least-squares analysis using metabolite-corrected arterial input function and brain data processed with scatter correction using narrow-beam geometry μ (SC) and without scatter correction using broad-beam μ (NoSC). Effects of SC were markedly different among brain regions. SC increased activities in the putamen and thalamus after 1-1.5 h while it decreased activity during the entire experiment in the temporal cortex and cerebellum. Compared with NoSC, SC significantly increased specific distribution volume in the putamen (58%, P=0.0001) and thalamus (23%, P=0.0297). Compared with NoSC, SC made regional distribution of the specific distribution volume closer to that of [18F]fallypride. It is concluded that SC is required for accurate quantification of distribution volumes of receptor ligands in SPET studies.
Effect of scatter correction on the compartmental measurement of striatal and extrastriatal dopamine D2 receptors using [ 123I]epidepride SPET
No results.
Effect of scatter correction on the compartmental measurement of striatal and extrastriatal dopamine D2 receptors using [ 123I]epidepride SPET