Department of Pharmacy, University of Naples Federico II, Via Mezzocannone 16, and Via Domenico Montesano 49, 80100 Napoli, Italy
Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples Federico II, Via Mezzocannone 16, 80134 Napoli, Italy
Istituto di Biostrutture e Bioimmagini - CNR, Via Mezzocannone 16, 80134 Napoli, Italy
DFM Scarl, Via Mezzocannone 16, 80134 Napoli, Italy
Department of Experimental Medicine, Second University of Naples, Via De Crecchio 7, 80138 Napoli, Italy
Department of Biochemistry and Pathology, Second University of Naples, Via De Crecchio 7, 80138 Napoli, Italy
References: Moros, M., Mitchell, S.G., Grazu, V., Fuente De La, J.M., The fate of nanocarriers as nanomedicines in vivo: Important considerations and biological barriers to overcome (2013) Curr. Med. Chem., 20, pp. 2759-277
Bareford, L.M., Swaan, P.W., Endocytic mechanisms for targeted drug delivery (2007) Advanced Drug Delivery Reviews, 59 (8), pp. 748-758. , DOI 10.1016/j.addr.2007.06.008, PII S0169409X07000968, Organelle-Specific Targeting in Drug Delivery and Design
Jin, L., Zeng, X., Liu, M., Deng, Y., He, N., Current progress in gene delivery technology based on chemical methods and nano-carriers (2014) Theranostics, 4, pp. 240-255
Alyautdin, R., Khalin, I., Nafeeza, M.I., Haron, M.H., Kuznetsov, D., Nanoscale drug delivery systems and the blood-brain barrier (2014) Int. J. Nanomedicine, 9, pp. 795-811
Pinzon-Daza, M.L., Campia, I., Kopecka, J., Garzon, R., Ghigo, D., Riganti, C., Nanoparticle- and liposome-carried drugs: New strategies for active targeting and drug delivery across blood-brain barrier (2013) Curr. Drug Metab., 14, pp. 625-640
Hartman, Z.C., Appledorn, D.M., Serra, D., Glass, O., Mendelson, T.B., Clay, T.M., Amalfitano, A., Replication-attenuated human adenoviral type 4 vectors elicit capsid dependent enhanced innate immune responses that are partially dependent upon interactions with the complement system (2008) Virology, 374, pp. 453-467
Cooray, S., Howe, S.J., Thrasher, A.J., Retrovirus and lentivirus vector design and methods of cell conditioning (2012) Methods Enzymol., 507, pp. 29-57
Ellis, J., Silencing and variegation of gammaretrovirus and lentivirus vectors (2005) Human Gene Therapy, 16 (11), pp. 1241-1246. , DOI 10.1089/hum.2005.16.1241
Selkirk, S.M., Gene therapy in clinical medicine (2004) Postgraduate Medical Journal, 80 (948), pp. 560-570. , DOI 10.1136/pgmj.2003.017764
Galdiero, S., Vitiello, M., Falanga, A., Cantisani, M., Incoronato, N., Galdiero, M., Intracellular delivery: Exploiting viral membranotropic peptides (2012) Curr. Drug Metab., 13, pp. 93-104
Aris, A., Villaverde, A., Modular protein engineering for non-viral gene therapy (2004) Trends in Biotechnology, 22 (7), pp. 371-377. , DOI 10.1016/j.tibtech.2004.05.004, PII S0167779904001416
Bronstein, L.M., Virus-based nanoparticles with inorganic cargo: What does the future hold? (2011) SMALL, 7, pp. 1609-1618
Radtke, K., Dohner, K., Sodeik, B., Viral interactions with the cytoskeleton: A hitchhiker's guide to the cell (2006) Cellular Microbiology, 8 (3), pp. 387-400. , DOI 10.1111/j.1462-5822.2005.00679.x
Skehel, J.J., Wiley, D.C., Receptor binding and membrane fusion in virus entry: The influenza hemagglutinin (2000) Annu. Rev. Biochem., 69, pp. 531-569
Marsh, M., Helenius, A., Virus entry: Open sesame (2006) Cell, 124 (4), pp. 729-740. , DOI 10.1016/j.cell.2006.02.007, PII S0092867406001826
Greber, U.F., Signalling in viral entry (2002) Cellular and Molecular Life Sciences, 59 (4), pp. 608-626. , DOI 10.1007/s00018-002-8453-3
Klasse, P.J., The molecular basis of HIV entry (2012) Cell. Microbiol., 14, pp. 1183-1192
Eisenberg, R.J., Atanasiu, D., Cairns, T.M., Gallagher, J.R., Krummenacher, C., Cohen, G.H., Herpes virus fusion and entry: A story with many characters (2012) Viruses, 4, pp. 800-832
Maxfield, F.R., McGraw, T.E., Endocytic recycling (2004) Nature Reviews Molecular Cell Biology, 5 (2), pp. 121-132. , DOI 10.1038/nrm1315
Harrison, S.C., Mechanism of Membrane Fusion by Viral Envelope Proteins (2005) Advances in Virus Research, 64, pp. 231-261. , DOI 10.1016/S0065-3527(05)64007-9, PII S0065352705640079, Virus Structure and Assembly
Backovic, M., Longnecker, R., Jardetzky, T.S., Structure of a trimeric variant of the Epstein-Barr virus glycoprotein B (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 2880-2885
Harrison, S.C., Viral membrane fusion (2008) Nature Structural and Molecular Biology, 15 (7), pp. 690-698. , DOI 10.1038/nsmb.1456, PII NSMB1456
Lamb, R.A., Paterson, R.G., Jardetzky, T.S., Paramyxovirus membrane fusion: Lessons from the F and HN atomic structures (2006) Virology, 344 (1), pp. 30-37. , DOI 10.1016/j.virol.2005.09.007, PII S0042682205005684
Stiasny, K., Heinz, F.X., Flavivirus membrane fusion (2006) Journal of General Virology, 87 (10), pp. 2755-2766. , DOI 10.1099/vir.0.82210-0
Kielian, M., Class II virus membrane fusion proteins (2006) Virology, 344 (1), pp. 38-47. , DOI 10.1016/j.virol.2005.09.036, PII S0042682205006008
Kielian, M., Rey, F.A., Virus membrane-fusion proteins: More than one way to make a hairpin (2006) Nature Reviews Microbiology, 4 (1), pp. 67-76. , DOI 10.1038/nrmicro1326, PII N1326
Weissenhorn, W., Hinz, A., Gaudin, Y., Virus membrane fusion (2007) FEBS Letters, 581 (11), pp. 2150-2155. , DOI 10.1016/j.febslet.2007.01.093, PII S0014579307001664, Membrane Trafficking
Wilson, I.A., Skehel, J.J., Wiley, D.C., Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution (1981) Nature, 289, pp. 366-373
Fass, D., Harrison, S.C., Kim, P.S., Retrovirus envelope domain at 1.7 angstrom resolution (1996) Nat. Struct. Biol., 3, pp. 465-469
Weissenhorn, W., Carfi, A., Lee, K.-H., Skehel, J.J., Wiley, D.C., Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain (1998) Molecular Cell, 2 (5), pp. 605-616
Yin, H.-S., Wen, X., Paterson, R.G., Lamb, R.A., Jardetzky, T.S., Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation (2006) Nature, 439 (7072), pp. 38-44. , DOI 10.1038/nature04322
Xu, Y., Liu, Y., Lou, Z., Qin, L., Li, X., Bai, Z., Pang, H., Rao, Z., Structural basis for coronavirus-mediated membrane fusion: Crystal structure of mouse hepatitis virus spike protein fusion core (2004) Journal of Biological Chemistry, 279 (29), pp. 30514-30522. , DOI 10.1074/jbc.M403760200
Rey, F.A., Heinz, F.X., Mandl, C., Kunz, C., Harrison, S.C., The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution (1995) Nature, 375, pp. 291-298
Lescar, J., Roussel, A., Wien, M.W., Navaza, J., Fuller, S.D., Wengler, G., Wengler, G., Rey, F.A., The fusion glycoprotein shell of Semliki Forest virus: An icosahedral assembly primed for fusogenic activation at endosomal pH (2001) Cell, 105 (1), pp. 137-148. , DOI 10.1016/S0092-8674(01)00303-8
Modis, Y., Ogata, S., Clements, D., Harrison, S.C., A ligand-binding pocket in the dengue virus envelope glycoprotein (2003) Proceedings of the National Academy of Sciences of the United States of America, 100 (12), pp. 6986-6991. , DOI 10.1073/pnas.0832193100
Roche, S., Bressanelli, S., Rey, F.A., Gaudin, Y., Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G (2006) Science, 313 (5784), pp. 187-191. , DOI 10.1126/science.1127683
Heldwein, E.E., Lou, H., Bender, F.C., Cohen, G.H., Eisenberg, R.J., Harrison, S.C., Crystal structure of glycoprotein B from herpes simplex virus 1 (2006) Science, 313 (5784), pp. 217-220. , DOI 10.1126/science.1126548
Kadlec, J., Loureiro, S., Abrescia, N.G., Stuart, D.I., Jones, I.M., The postfusion structure of baculovirus gp64 supports a unified view of viral fusion machines (2008) Nat. Struct. Mol. Biol., 15, pp. 1024-1030
Banerjee, M., Johnson, J.E., Activation, exposure and penetration of virally encoded, membrane-active polypeptides during non-enveloped virus entry (2008) Curr. Protein Pept. Sci., 9, pp. 16-27
Zlotnick, A., Reddy, V.S., Dasgupta, R., Schneemann, A., Ray Jr., W.J., Rueckert, R.R., Johnson, J.E., Capsid assembly in a family of animal viruses primes an autoproteolytic maturation that depends on a single aspartic acid residue (1994) Journal of Biological Chemistry, 269 (18), pp. 13680-13684
Arnold, E., Luo, M., Vriend, G., Implications of the picornavirus capsid structure for polyprotein processing (1987) Proceedings of the National Academy of Sciences of the United States of America, 84 (1), pp. 21-25. , DOI 10.1073/pnas.84.1.21
Ivanovic, T., Agosto, M.A., Zhang, L., Chandran, K., Harrison, S.C., Nibert, M.L., Peptides released from reovirus outer capsid form membrane pores that recruit virus particles (2008) EMBO Journal, 27 (8), pp. 1289-1298. , DOI 10.1038/emboj.2008.60, PII EMBOJ200860
Arias, C.F., Romero, P., Alvarez, V., Lopez, S., Trypsin activation pathway of rotavirus infectivity (1996) Journal of Virology, 70 (9), pp. 5832-5839
Greber, U.F., Webster, P., Weber, J., Helenius, A., The role of the adenovirus protease in virus entry into cells (1996) EMBO Journal, 15 (8), pp. 1766-1777
Da Costa, B., Chevalier, C., Henry, C., Huet, J.-C., Petit, S., Lepault, J., Boot, H., Delmas, B., The capsid of infectious bursal disease virus contains several small peptides arising from the maturation process of pVP2 (2002) Journal of Virology, 76 (5), pp. 2393-2402. , DOI 10.1128/jvi.76.5.2393-2402.2002
Galloux, M., Libersou, S., Alves, I.D., Marquant, R., Salgado, G.F., Rezaei, H., Lepault, J., Morellet, N., NMR structure of a viral peptide inserted in artificial membranes: A view on the early steps of the birnavirus entry process (2010) J. Biol. Chem., 285, pp. 19409-19421
Greber, U.F., Fornerod, M., Nuclear import in viral infections (2004) Current Topics in Microbiology and Immunology, 285, pp. 109-138
Greber, U.F., Puntener, D., DNA-tumor virus entry - From plasma membrane to the nucleus (2009) Semin. Cell Dev. Biol., 20, pp. 631-642
Whittaker, G.R., Virus nuclear import (2003) Advanced Drug Delivery Reviews, 55 (6), pp. 733-747. , DOI 10.1016/S0169-409X(03)00051-6
Cohen, S., Au, S., Pante, N., How viruses access the nucleus (1813) Biochim. Biophys. Acta, 2011, pp. 1634-1645
Fominaya, J., Wels, W., Target cell-specific DNA transfer mediated by a chimeric multidomain protein: Novel non-viral gene delivery system (1996) Journal of Biological Chemistry, 271 (18), pp. 10560-10568. , DOI 10.1074/jbc.271.18.10560
Leopold, P.L., Ferris, B., Grinberg, I., Worgall, S., Hackett, N.R., Crystal, R.G., Fluorescent virions: Dynamic tracking of the pathway of adenoviral gene transfer vectors in living cells (1998) Human Gene Therapy, 9 (3), pp. 367-378
Greber, U.F., Willetts, M., Webster, P., Helenius, A., Stepwise dismantling of adenovirus 2 during entry into cells (1993) Cell, 75 (3), pp. 477-486. , DOI 10.1016/0092-8674(93)90382-Z
Prongidi-Fix, L., Sugawara, M., Bertani, P., Raya, J., Leborgne, C., Kichler, A., Bechinger, B., Self-promoted cellular uptake of peptide/DNA transfection complexes (2007) Biochemistry, 46 (40), pp. 11253-11262. , DOI 10.1021/bi700766j
Bechinger, B., Vidovic, V., Bertani, P., Kichler, A., A new family of peptide-nucleic acid nanostructures with potent transfection activities (2011) J. Pept. Sci., 17, pp. 88-93
Plank, C., Zauner, W., Wagner, E., Application of membrane-active peptides for drug and gene delivery across cellular membranes (1998) Advanced Drug Delivery Reviews, 34 (1), pp. 21-35. , DOI 10.1016/S0169-409X(98)00005-2, PII S0169409X98000052
Funhoff, A.M., Van Nostrum, C.F., Lok, M.C., Fretz, M.M., Crommelin, D.J.A., Hennink, W.E., Poly(3-guanidinopropyl methacrylate): A novel cationic polymer for gene delivery (2004) Bioconjugate Chemistry, 15 (6), pp. 1212-1220. , DOI 10.1021/bc049864q
Jiang, X., Lok, M.C., Hennink, W.E., Degradable-brushed pHEMA-pDMAEMA synthesized via ATRP and click chemistry for gene delivery (2007) Bioconjugate Chemistry, 18 (6), pp. 2077-2084. , DOI 10.1021/bc0701186
Deshayes, S., Gerbal-Chaloin, S., Morris, M.C., Aldrian-Herrada, G., Charnet, P., Divita, G., Heitz, F., On the mechanism of non-endosomial peptide-mediated cellular delivery of nucleic acids (2004) Biochimica et Biophysica Acta - Biomembranes, 1667 (2), pp. 141-147. , DOI 10.1016/j.bbamem.2004.09.010, PII S000527360400241X
Deshayes, S., Morris, M., Heitz, F., Divita, G., Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy (2008) Advanced Drug Delivery Reviews, 60 (4-5), pp. 537-547. , DOI 10.1016/j.addr.2007.09.005, PII S0169409X07002888
Mastrobattista, E., Koning, G.A., Van Bloois, L., Filipe, A.C.S., Jiskoot, W., Storm, G., Functional characterization of an endosome-disruptive peptide and its application in cytosolic delivery of immunoliposome-entrapped proteins (2002) Journal of Biological Chemistry, 277 (30), pp. 27135-27143. , DOI 10.1074/jbc.M200429200
Fretz, M.M., Mastrobattista, E., Koning, G.A., Jiskoot, W., Storm, G., Strategies for cytosolic delivery of liposomal macromolecules (2005) International Journal of Pharmaceutics, 298 (2), pp. 305-309. , DOI 10.1016/j.ijpharm.2005.02.040, PII S0378517305002474, Selected Contribution from the 5th European Workshop on Particulate Systems
Galdiero, S., Falanga, A., Vitiello, G., Vitiello, M., Pedone, C., D'Errico, G., Galdiero, M., Role of membranotropic sequences from herpes simplex virus type i glycoproteins B and H in the fusion process (2010) Biochim. Biophys. Acta, 1798, pp. 579-591
Tu, Y., Kim, J.-S., A fusogenic segment of glycoprotein H from herpes simplex virus enhances transfection efficiency of cationic liposomes (2008) Journal of Gene Medicine, 10 (6), pp. 646-654. , DOI 10.1002/jgm.1184
Smaldone, G., Falanga, A., Capasso, D., Guarnieri, D., Correale, S., Galdiero, M., Netti, P.A., Pedone, E., GH625 is a viral derived peptide for effective delivery of intrinsically disordered proteins (2013) Int. J. Nanomedicine, 8, pp. 2555-2565
Bao, G., Mitragotri, S., Tong, S., Multifunctional nanoparticles for drug delivery and molecular imaging (2013) Annu. Rev. Biomed. Eng., 15, pp. 253-282
Wong, I.Y., Bhatia, S.N., Toner, M., Nanotechnology: Emerging tools for biology and medicine (2013) Genes Dev., 27, pp. 2397-2408
Kiriyama, A., Iga, K., Shibata, N., Availability of polymeric nanoparticles for specific enhanced and targeted drug delivery (2013) Ther. Deliv., 4, pp. 1261-1278
Ng, K.K., Lovell, J.F., Zheng, G., Lipoprotein-inspired nanoparticles for cancer theranostics (2011) Acc. Chem. Res., 44, pp. 1105-1113
Ryu, J.H., Koo, H., Sun, I.C., Yuk, S.H., Choi, K., Kim, K., Kwon, I.C., Tumor-targeting multi-functional nanoparticles for theragnosis: New paradigm for cancer therapy (2012) Adv. Drug Deliv. Rev., 64, pp. 1447-1458
Arias, J.L., Advanced methodologies to formulate nanotheragnostic agents for combined drug delivery and imaging (2011) Expert Opin. Drug Deliv., 8, pp. 1589-1608
Falanga, A., Tarallo, R., Galdiero, E., Cantisani, M., Galdiero, M., Galdiero, S., Review of a viral peptide nanosystem for intracellular delivery (2013) J. Nanophotonics, 7, pp. 071599-071599
Gregoriadis, G., Ryman, B.E., Lysosomal localization of -fructofuranosidase-containing liposomes injected into rats (1972) Biochem. J., 129, pp. 123-133
Cukierman, E., Khan, D.R., The benefits and challenges associated with the use of drug delivery systems in cancer therapy (2010) Biochem. Pharmacol., 80, pp. 762-770
Papisov, M.I., Theoretical considerations of RES-avoiding liposomes: Molecular mechanics and chemistry of liposome interactions (1998) Advanced Drug Delivery Reviews, 32 (1-2), pp. 119-138. , DOI 10.1016/S0169-409X(97)00135-X, PII S0169409X9700135X
Miller, C.R., Bondurant, B., McLean, S.D., McGovern, K.A., O'Brien, D.F., Liposome-cell interactions in vitro: Effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes (1998) Biochemistry, 37 (37), pp. 12875-12883. , DOI 10.1021/bi980096y
Maeda, H., Wu, J., Sawa, T., Matsumura, Y., Hori, K., Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review (2000) Journal of Controlled Release, 65 (1-2), pp. 271-284. , DOI 10.1016/S0168-3659(99)00248-5, PII S0168365999002485
Tarallo, R., Accardo, A., Falanga, A., Guarnieri, D., Vitiello, G., Netti, P., D'Errico, G., Galdiero, S., Clickable functionalization of liposomes with the gH625 peptide from Herpes simplex virus type i for intracellular drug delivery (2011) Chemistry, 17, pp. 12659-12668
Albrizio, S., Giusti, L., D'Errico, G., Esposito, C., Porchia, F., Caliendo, G., Novellino, E., D'Ursi, A.M., Driving forces in the delivery of penetratin conjugated G protein fragment (2007) Journal of Medicinal Chemistry, 50 (7), pp. 1458-1464. , DOI 10.1021/jm060935b
Ma, N., Ma, C., Deng, Y., Wang, T., He, N., Advances in applications of dendritic compounds (2013) J. Nanosci. Nanotechnol., 13, pp. 33-39
Lo, S.T., Kumar, A., Hsieh, J.T., Sun, X., Dendrimer nanoscaffolds for potential theranostics of prostate cancer with a focus on radiochemistry (2013) Mol. Pharm., 10, pp. 793-812
Carberry, T.P., Tarallo, R., Falanga, A., Finamore, E., Galdiero, M., Weck, M., Galdiero, S., Dendrimer functionalization with a membrane-interacting domain of herpes simplex virus type 1: Towards intracellular delivery (2012) Chemistry, 18, pp. 13678-13685
Guarnieri, D., Falanga, A., Muscetti, O., Tarallo, R., Fusco, S., Galdiero, M., Galdiero, S., Netti, P.A., Shuttle-mediated nanoparticle delivery to the blood-brain barrier (2013) Small, 9, pp. 853-862
Acharya, A., Luminescent magnetic quantum dots for in vitro/in vivo imaging and applications in therapeutics (2013) J. Nanosci. Nanotechnol., 13, pp. 3753-3768
Loomba, L., Scarabelli, T., Metallic nanoparticles and their medicinal potential. Part II: Aluminosilicates, nanobiomagnets, quantum dots and cochleates (2013) Ther. Deliv., 4, pp. 1179-1196
Geszke-Moritz, M., Moritz, M., Quantum dots as versatile probes in medical sciences: Synthesis, modification and properties (2013) Mater. Sci. Eng. C, Mater. Biol. Appl., 33, pp. 1008-1021
Cheki, M., Moslehi, M., Assadi, M., Marvelous applications of quantum dots (2013) Eur. Rev. Med. Pharmacol. Sci., 17, pp. 1141-1148
Glover, D.J., Ng, S.M., Mechler, A., Martin, L.L., Jans, D.A., Multifunctional protein nanocarriers for targeted nuclear gene delivery in nondividing cells (2009) FASEB J., 23, pp. 2996-3006
Favaro, M.T., De Toledo, M.A., Alves, R.F., Santos, C.A., Beloti, L.L., Janissen, R., De La Torre, L.G., Azzoni, A.R., Development of a non-viral gene delivery vector based on the dynein light chain Rp3 and the TAT peptide (2014) J. Biotechnol., 173, pp. 10-18
Hatakeyama, H., Ito, E., Akita, H., Oishi, M., Nagasaki, Y., Futaki, S., Harashima, H., A pH-sensitive fusogenic peptide facilitates endosomal escape and greatly enhances the gene silencing of siRNA-containing nanoparticles in vitro and in vivo (2009) J. Control. Release, 139, pp. 127-132
El-Sayed, A., Masuda, T., Khalil, I., Akita, H., Harashima, H., Enhanced gene expression by a novel stearylated INF7 peptide derivative through fusion independent endosomal escape (2009) J. Control. Release, 138, pp. 160-167
Zhao, Q., Li, S., Yu, H., Xia, N., Modis, Y., Virus-like particle-based human vaccines: Quality assessment based on structural and functional properties (2013) Trends Biotechnol., 31, pp. 654-663
Rodriguez-Limas, W.A., Sekar, K., Tyo, K.E., Virus-like particles: The future of microbial factories and cell-free systems as platforms for vaccine development (2013) Curr. Opin. Biotechnol., 24, pp. 1089-1093
Li, F., Wang, Q., Fabrication of nanoarchitectures templated by virus-based nanoparticles: Strategies and applications (2014) SMALL, 10, pp. 230-245
Ma, Y., Nolte, R.J., Cornelissen, J.J., Virus-based nanocarriers for drug delivery (2012) Adv. Drug Deliv. Rev., 64, pp. 811-825
Lockney, D.M., Guenther, R.N., Loo, L., Overton, W., Antonelli, R., Clark, J., Hu, M., Franzen, S., The Red clover necrotic mosaic virus capsid as a multifunctional cell targeting plant viral nanoparticle (2011) Bioconjug. Chem., 22, pp. 67-73
Ren, Y., Sek, M.W., Lim, L.-Y., Folic acid-conjugated protein cages of a plant virus: A novel delivery platform for doxorubicin (2007) Bioconjugate Chemistry, 18 (3), pp. 836-843. , DOI 10.1021/bc060361p
Kaiser, C.R., Flenniken, M.L., Gillitzer, E., Harmsen, A.L., Harmsen, A.G., Jutila, M.A., Douglas, T., Young, M.J., Biodistribution studies of protein cage nanoparticles demonstrate broad tissue distribution and rapid clearance in vivo (2007) Int. J. Nanomedicine, 2, pp. 715-733
Lee, D.-E., Kim, A., Saravanakumar, G., Koo, H., Kwon, I., Choi, K., Park, J., Kim, K., Hyaluronidase-sensitive SPIONs for MR/optical dual imaging nanoprobes (2011) Macromol. Res., 19, pp. 861-867
Ohtake, N., Niikura, K., Suzuki, T., Nagakawa, K., Mikuni, S., Matsuo, Y., Kinjo, M., Ijiro, K., Low pH-triggered model drug molecule release from virus-like particles (2010) ChemBioChem, 11, pp. 959-962
Zochowska, M., Paca, A., Schoehn, G., Andrieu, J.P., Chroboczek, J., Dublet, B., Szolajska, E., Adenovirus dodecahedron, as a drug delivery vector (2009) PLoS One, 4, pp. e5569
Ashley, C.E., Carnes, E.C., Phillips, G.K., Durfee, P.N., Buley, M.D., Lino, C.A., Padilla, D.P., Peabody, D.S., Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles (2011) ACS Nano, 5, pp. 5729-5745
Ksendzovsky, A., Walbridge, S., Saunders, R.C., Asthagiri, A.R., Heiss, J.D., Lonser, R.R., Convection-enhanced delivery of M13 bacteriophage to the brain (2012) J. Neurosurg., 117, pp. 197-203
Bareford, L. M., Swaan, P. W., Endocytic mechanisms for targeted drug delivery (2007) Advanced Drug Delivery Reviews, 59 (8), pp. 748-758. , DOI 10. 1016/j. addr. 2007. 06. 008, PII S0169409X07000968, Organelle-Specific Targeting in Drug Delivery and Design
Pinzon-Daza, M. L., Campia, I., Kopecka, J., Garzon, R., Ghigo, D., Riganti, C., Nanoparticle- and liposome-carried drugs: New strategies for active targeting and drug delivery across blood-brain barrier (2013) Curr. Drug Metab., 14, pp. 625-640
Hartman, Z. C., Appledorn, D. M., Serra, D., Glass, O., Mendelson, T. B., Clay, T. M., Amalfitano, A., Replication-attenuated human adenoviral type 4 vectors elicit capsid dependent enhanced innate immune responses that are partially dependent upon interactions with the complement system (2008) Virology, 374, pp. 453-467
Selkirk, S. M., Gene therapy in clinical medicine (2004) Postgraduate Medical Journal, 80 (948), pp. 560-570. , DOI 10. 1136/pgmj. 2003. 017764
Bronstein, L. M., Virus-based nanoparticles with inorganic cargo: What does the future hold? (2011) SMALL, 7, pp. 1609-1618
Skehel, J. J., Wiley, D. C., Receptor binding and membrane fusion in virus entry: The influenza hemagglutinin (2000) Annu. Rev. Biochem., 69, pp. 531-569
Greber, U. F., Signalling in viral entry (2002) Cellular and Molecular Life Sciences, 59 (4), pp. 608-626. , DOI 10. 1007/s00018-002-8453-3
Klasse, P. J., The molecular basis of HIV entry (2012) Cell. Microbiol., 14, pp. 1183-1192
Eisenberg, R. J., Atanasiu, D., Cairns, T. M., Gallagher, J. R., Krummenacher, C., Cohen, G. H., Herpes virus fusion and entry: A story with many characters (2012) Viruses, 4, pp. 800-832
Maxfield, F. R., McGraw, T. E., Endocytic recycling (2004) Nature Reviews Molecular Cell Biology, 5 (2), pp. 121-132. , DOI 10. 1038/nrm1315
Harrison, S. C., Mechanism of Membrane Fusion by Viral Envelope Proteins (2005) Advances in Virus Research, 64, pp. 231-261. , DOI 10. 1016/S0065-3527 (05) 64007-9, PII S0065352705640079, Virus Structure and Assembly
Harrison, S. C., Viral membrane fusion (2008) Nature Structural and Molecular Biology, 15 (7), pp. 690-698. , DOI 10. 1038/nsmb. 1456, PII NSMB1456
Lamb, R. A., Paterson, R. G., Jardetzky, T. S., Paramyxovirus membrane fusion: Lessons from the F and HN atomic structures (2006) Virology, 344 (1), pp. 30-37. , DOI 10. 1016/j. virol. 2005. 09. 007, PII S0042682205005684
Wilson, I. A., Skehel, J. J., Wiley, D. C., Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 resolution (1981) Nature, 289, pp. 366-373
Yin, H. -S., Wen, X., Paterson, R. G., Lamb, R. A., Jardetzky, T. S., Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation (2006) Nature, 439 (7072), pp. 38-44. , DOI 10. 1038/nature04322
Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C., Harrison, S. C., The envelope glycoprotein from tick-borne encephalitis virus at 2 resolution (1995) Nature, 375, pp. 291-298
Heldwein, E. E., Lou, H., Bender, F. C., Cohen, G. H., Eisenberg, R. J., Harrison, S. C., Crystal structure of glycoprotein B from herpes simplex virus 1 (2006) Science, 313 (5784), pp. 217-220. , DOI 10. 1126/science. 1126548
Arias, C. F., Romero, P., Alvarez, V., Lopez, S., Trypsin activation pathway of rotavirus infectivity (1996) Journal of Virology, 70 (9), pp. 5832-5839
Greber, U. F., Webster, P., Weber, J., Helenius, A., The role of the adenovirus protease in virus entry into cells (1996) EMBO Journal, 15 (8), pp. 1766-1777
Greber, U. F., Fornerod, M., Nuclear import in viral infections (2004) Current Topics in Microbiology and Immunology, 285, pp. 109-138
Greber, U. F., Puntener, D., DNA-tumor virus entry - From plasma membrane to the nucleus (2009) Semin. Cell Dev. Biol., 20, pp. 631-642
Whittaker, G. R., Virus nuclear import (2003) Advanced Drug Delivery Reviews, 55 (6), pp. 733-747. , DOI 10. 1016/S0169-409X (03) 00051-6
Leopold, P. L., Ferris, B., Grinberg, I., Worgall, S., Hackett, N. R., Crystal, R. G., Fluorescent virions: Dynamic tracking of the pathway of adenoviral gene transfer vectors in living cells (1998) Human Gene Therapy, 9 (3), pp. 367-378
Greber, U. F., Willetts, M., Webster, P., Helenius, A., Stepwise dismantling of adenovirus 2 during entry into cells (1993) Cell, 75 (3), pp. 477-486. , DOI 10. 1016/0092-8674 (93) 90382-Z
Funhoff, A. M., Van Nostrum, C. F., Lok, M. C., Fretz, M. M., Crommelin, D. J. A., Hennink, W. E., Poly (3-guanidinopropyl methacrylate): A novel cationic polymer for gene delivery (2004) Bioconjugate Chemistry, 15 (6), pp. 1212-1220. , DOI 10. 1021/bc049864q
Jiang, X., Lok, M. C., Hennink, W. E., Degradable-brushed pHEMA-pDMAEMA synthesized via ATRP and click chemistry for gene delivery (2007) Bioconjugate Chemistry, 18 (6), pp. 2077-2084. , DOI 10. 1021/bc0701186
Fretz, M. M., Mastrobattista, E., Koning, G. A., Jiskoot, W., Storm, G., Strategies for cytosolic delivery of liposomal macromolecules (2005) International Journal of Pharmaceutics, 298 (2), pp. 305-309. , DOI 10. 1016/j. ijpharm. 2005. 02. 040, PII S0378517305002474, Selected Contribution from the 5th European Workshop on Particulate Systems
Tu, Y., Kim, J. -S., A fusogenic segment of glycoprotein H from herpes simplex virus enhances transfection efficiency of cationic liposomes (2008) Journal of Gene Medicine, 10 (6), pp. 646-654. , DOI 10. 1002/jgm. 1184
Wong, I. Y., Bhatia, S. N., Toner, M., Nanotechnology: Emerging tools for biology and medicine (2013) Genes Dev., 27, pp. 2397-2408
Ng, K. K., Lovell, J. F., Zheng, G., Lipoprotein-inspired nanoparticles for cancer theranostics (2011) Acc. Chem. Res., 44, pp. 1105-1113
Ryu, J. H., Koo, H., Sun, I. C., Yuk, S. H., Choi, K., Kim, K., Kwon, I. C., Tumor-targeting multi-functional nanoparticles for theragnosis: New paradigm for cancer therapy (2012) Adv. Drug Deliv. Rev., 64, pp. 1447-1458
Arias, J. L., Advanced methodologies to formulate nanotheragnostic agents for combined drug delivery and imaging (2011) Expert Opin. Drug Deliv., 8, pp. 1589-1608
Papisov, M. I., Theoretical considerations of RES-avoiding liposomes: Molecular mechanics and chemistry of liposome interactions (1998) Advanced Drug Delivery Reviews, 32 (1-2), pp. 119-138. , DOI 10. 1016/S0169-409X (97) 00135-X, PII S0169409X9700135X
Miller, C. R., Bondurant, B., McLean, S. D., McGovern, K. A., O'Brien, D. F., Liposome-cell interactions in vitro: Effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes (1998) Biochemistry, 37 (37), pp. 12875-12883. , DOI 10. 1021/bi980096y
Lo, S. T., Kumar, A., Hsieh, J. T., Sun, X., Dendrimer nanoscaffolds for potential theranostics of prostate cancer with a focus on radiochemistry (2013) Mol. Pharm., 10, pp. 793-812
Carberry, T. P., Tarallo, R., Falanga, A., Finamore, E., Galdiero, M., Weck, M., Galdiero, S., Dendrimer functionalization with a membrane-interacting domain of herpes simplex virus type 1: Towards intracellular delivery (2012) Chemistry, 18, pp. 13678-13685
Glover, D. J., Ng, S. M., Mechler, A., Martin, L. L., Jans, D. A., Multifunctional protein nanocarriers for targeted nuclear gene delivery in nondividing cells (2009) FASEB J., 23, pp. 2996-3006
Favaro, M. T., De Toledo, M. A., Alves, R. F., Santos, C. A., Beloti, L. L., Janissen, R., De La Torre, L. G., Azzoni, A. R., Development of a non-viral gene delivery vector based on the dynein light chain Rp3 and the TAT peptide (2014) J. Biotechnol., 173, pp. 10-18
Ma, Y., Nolte, R. J., Cornelissen, J. J., Virus-based nanocarriers for drug delivery (2012) Adv. Drug Deliv. Rev., 64, pp. 811-825
Aljabali, A. A., Shukla, S., Lomonossoff, G. P., Steinmetz, N. F., Evans, D. J., CPMV-DOX delivers (2013) Mol. Pharm., 10, pp. 3-10
Lockney, D. M., Guenther, R. N., Loo, L., Overton, W., Antonelli, R., Clark, J., Hu, M., Franzen, S., The Red clover necrotic mosaic virus capsid as a multifunctional cell targeting plant viral nanoparticle (2011) Bioconjug. Chem., 22, pp. 67-73
Ren, Y., Sek, M. W., Lim, L. -Y., Folic acid-conjugated protein cages of a plant virus: A novel delivery platform for doxorubicin (2007) Bioconjugate Chemistry, 18 (3), pp. 836-843. , DOI 10. 1021/bc060361p
Kaiser, C. R., Flenniken, M. L., Gillitzer, E., Harmsen, A. L., Harmsen, A. G., Jutila, M. A., Douglas, T., Young, M. J., Biodistribution studies of protein cage nanoparticles demonstrate broad tissue distribution and rapid clearance in vivo (2007) Int. J. Nanomedicine, 2, pp. 715-733
Lee, D. -E., Kim, A., Saravanakumar, G., Koo, H., Kwon, I., Choi, K., Park, J., Kim, K., Hyaluronidase-sensitive SPIONs for MR/optical dual imaging nanoprobes (2011) Macromol. Res., 19, pp. 861-867
Ashley, C. E., Carnes, E. C., Phillips, G. K., Durfee, P. N., Buley, M. D., Lino, C. A., Padilla, D. P., Peabody, D. S., Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles (2011) ACS Nano, 5, pp. 5729-5745
Pokorski, J. K., Hovlid, M. L., Finn, M. G., Cell targeting with hybrid Q virus-like particles displaying epidermal growth factor (2011) ChemBioChem, 12, pp. 2441-2447
Exploitation of viral properties for intracellular delivery
Nanotechnology is an expanding area of study with potentially pivotal applications in a discipline as medicine where new biomedical active molecules or strategies are continuously developing. One of the principal drawbacks for the application of new therapies is the difficulty to cross membranes that represent the main physiological barrier in our body and in all living cells. Membranes are selectively permeable and allow the selective internalization of substances; generally, they form a highly impermeable barrier to most polar and charged molecules, and represent an obstacle for drug delivery, limiting absorption to specific routes and mechanisms. Viruses provide attracting suggestions for the development of targeted drug carriers as they have evolved naturally to deliver their genomes to host cells with high fidelity.A detailed understanding of virus structure and their mechanisms of entry into mammalian cells will facilitate the development and analysis of virus-based materials for medical applications. Copyright (c) 2014 European Peptide Society and John Wiley & Sons, Ltd.
Exploitation of viral properties for intracellular delivery
Malvindi MA, Greco A, Conversano F, Figuerola A, Corti M, Bonora M, Lascialfari A, Doumari HA, Moscardini M, Cingolani R, Gigli G, Casciaro S, Pellegrino T, Ragusa A * MR Contrast Agents(292 views) Small Animal Imaging, 2011 Jul 8; 21(13): 2548-2555. Impact Factor:1.784 ViewExport to BibTeXExport to EndNote