Sonosensitive theranostic liposomes for preclinical in vivo MRI-guided visualization of doxorubicin release stimulated by pulsed low intensity non-focused ultrasound
Keywords: Chemotherapy, Drug Products, Fluorescence Microscopy, Medical Nanotechnology, Tumors, Ultrasonic Applications, Antitumor Drugs, Focused Ultrasound, Imaging Agent, Mri Contrasts, Theranostic Agents, Therapeutic Benefits, Therapeutic Outcomes, Translatability, Liposomes, Doxorubicin, Gadoteridol, Animal Cell, Animal Experiment, Animal Model, Article, Breast Cancer, Cancer Cell, Confocal Microscopy, Contrast Enhancement, Contrast To Noise Ratio, Controlled Study, Drug Release, Ex Vivo Study, Female, In Vitro Study, In Vivo Study, Liposomal Delivery, Mouse, Nonhuman, Nuclear Magnetic Resonance Imaging, Priority Journal, Pulsed Low Intensity Non Focused Ultrasound,
Affiliations: *** IBB - CNR ***
Center for Molecular Imaging, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52Torino, Italy
Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Ribes 5Colleretto Giacosa (TO), Italy
Institute for Biostructures and Bioimages (CNR), C/o Molecular Biotechnology Center, University of Torino, Italy
Biolab, Department of Electronics and Telecommunications, Politecnico di TorinoTorino, Italy
References: Terreno, E., Uggeri, F., Aime, S., Image guided therapy: The advent of theranostic agents (2012) J. Control. Release, 161 (2), pp. 328-33
Prabhu, P., Patravale, V., The upcoming field of theranostic nanomedicine: An overview (2012) J. Biomed. Nanotechnol., 8 (6), pp. 859-882
Sumer, B., Gao, J.M., Theranostic nanomedicine for cancer (2008) Nanomedicine, 3 (2), pp. 137-140
Weissleder, R., Pittet, M.J., Imaging in the era of molecular oncology (2008) Nature, 452 (7187), pp. 580-589
Massoud, T.F., Gambhir, S.S., Molecular imaging in living subjects: Seeing fundamental biological processes in a new light (2003) Genes Dev., 17 (5), pp. 545-580
Weissleder, R., Molecular imaging: Exploring the next frontier (1999) Radiology, 212 (3), pp. 609-614
Jacobs, R.E., Cherry, S.R., Complementary emerging techniques: High-resolution PET and MRI (2001) Curr. Opin. Neurobiol., 11 (5), pp. 621-629
Manzoor, A.A., Overcoming limitations in nanoparticle drug delivery: Triggered, intravascular release to improve drug penetration into tumors (2012) Cancer Res., 72 (21), pp. 5566-5575
Torchilin, V., Liposomes in drug delivery (2012) Fundamentals and Applications of Controlled Release Drug Delivery, pp. 289-328. , J. Siepmann, R.A. Siegel, M.J. Rathbone, Springer New York
Ponce, A.M., Hyperthermia mediated liposomal drug delivery (2006) Int. J. Hyperth., 22 (3), pp. 205-213
Koning, G.A., Hyperthermia and thermosensitive liposomes for improved delivery of chemotherapeutic drugs to solid tumors (2010) Pharm. Res., 27 (8), pp. 1750-1754
Needham, D., A new temperature-sensitive liposome for use with mild hyperthermia: Characterization and testing in a human tumor xenograft model (2000) Cancer Res., 60 (5), pp. 1197-1201
Torres, E., Improved paramagnetic liposomes for MRI visualization of pH triggered release (2011) J. Control. Release, 154 (2), pp. 196-202
Kuppusamy, P., Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels (2002) Cancer Res., 62 (1), pp. 307-312
Mellal, D., Zumbuehl, A., Exit-strategies - Smart ways to release phospholipid vesicle cargo (2014) J. Mater. Chem. B, 2 (3), pp. 247-252
Zhu, L., Torchilin, V.P., Stimulus-responsive nanopreparations for tumor targeting (2013) Integr. Biol., 5 (1), pp. 96-107
Singh, R., Torti, S.V., Carbon nanotubes in hyperthermia therapy (2013) Adv. Drug Deliv. Rev., 65 (15), pp. 2045-2060
Bazrafshan, B., Temperature imaging of laser-induced thermotherapy (LITT) by MRI: Evaluation of different sequences in phantom (2014) Lasers Med. Sci., 29 (1), pp. 173-183
Kostrzewa, M., Microwave ablation of osteoid osteomas using dynamic MR imaging for early treatment assessment: Preliminary experience (2014) J. Vasc. Interv. Radiol., 25 (1), pp. 106-111
De Smet, M., Magnetic resonance guided high-intensity focused ultrasound mediated hyperthermia improves the intratumoral distribution of temperature-sensitive liposomal doxorubicin (2013) Investig. Radiol., 48 (6), pp. 395-405
Grull, H., Langereis, S., Hyperthermia-triggered drug delivery from temperature-sensitive liposomes using MRI-guided high intensity focused ultrasound (2012) J. Control. Release, 161 (2), pp. 317-327
Negussie, A.H., Formulation and characterisation of magnetic resonance imageable thermally sensitive liposomes for use with magnetic resonance-guided high intensity focused ultrasound (2011) Int. J. Hyperth., 27 (2), pp. 140-155
Ranjan, A., Image-guided drug delivery with magnetic resonance guided high intensity focused ultrasound and temperature sensitive liposomes in a rabbit Vx2 tumor model (2012) J. Control. Release, 158 (3), pp. 487-494
Li, L., Mild hyperthermia triggered doxorubicin release from optimized stealth thermosensitive liposomes improves intratumoral drug delivery and efficacy (2013) J. Control. Release, 168 (2), pp. 142-150
Lanza, G.M., Assessing the barriers to image-guided drug delivery (2014) Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 6 (1), pp. 1-14
Fernando, R., MRI-guided monitoring of thermal dose and targeted drug delivery for cancer therapy (2013) Pharm. Res., 30 (11), pp. 2709-2717
Dewhirst, M.W., Novel Approaches to Treatment of Hepatocellular Carcinoma and Hepatic Metastases Using Thermal Ablation and Thermosensitive Liposomes (2013) Surgical Oncology Clinics of North America, 22 (3), pp. 545-561
McDaniel, J.R., Dewhirst, M.W., Chilkoti, A., Actively targeting solid tumours with thermoresponsive drug delivery systems that respond to mild hyperthermia (2013) Int. J. Hyperth., 29 (6), pp. 501-510
Sharma, D., Chelvi, T.P., Ralhan, R., Thermosensitive liposomal taxol formulation: Heat-mediated targeted drug delivery in murine melanoma (1998) Melanoma Res., 8 (3), pp. 240-244
Papahadjopoulos, D., Phase transitions in phospholipid vesicles. Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol (1973) Biochim. Biophys. Acta, 311 (3), pp. 330-348
Dicheva, B.M., Koning, G.A., Targeted thermosensitive liposomes: An attractive novel approach for increased drug delivery to solid tumors (2014) Expert Opin. Drug Deliv., 11 (1), pp. 83-100
Li, L., A novel two-step mild hyperthermia for advanced liposomal chemotherapy (2014) J. Control. Release, 174, pp. 202-208
Nakayama, M., Akimoto, J., Okano, T., Polymeric micelles with stimuli-triggering systems for advanced cancer drug targeting (2014) J. Drug Target., 22 (7), pp. 584-599
May, J.P., Li, S.D., Hyperthermia-induced drug targeting (2013) Expert Opin. Drug Deliv., 10 (4), pp. 511-527
Needham, D., Materials characterization of the low temperature sensitive liposome (LTSL): Effects of the lipid composition (lysolipid and DSPE-PEG2000) on the thermal transition and release of doxorubicin (2013) Faraday Discuss., 161, pp. 515-534
Langereis, S., Paramagnetic liposomes for molecular MRI and MRI-guided drug delivery (2013) NMR Biomed., 26 (7), pp. 728-744
Wang, S., Pulsed high intensity focused ultrasound increases penetration and therapeutic efficacy of monoclonal antibodies in murine xenograft tumors (2012) J. Control. Release, 162 (1), pp. 218-224
Lin, C.Y., Ultrasound sensitive eLiposomes containing doxorubicin for drug targeting therapy (2014) Nanomedicine, 10 (1), pp. 67-76
Lin, H.Y., Thomas, J.L., Factors affecting responsivity of unilamellar liposomes to 20 kHz ultrasound (2004) Langmuir, 20 (15), pp. 6100-6106
Evjen, T.J., In vivo monitoring of liposomal release in tumours following ultrasound stimulation (2013) Eur. J. Pharm. Biopharm., 84 (3), pp. 526-531
Giustetto, P., Release of a paramagnetic magnetic resonance imaging agent from liposomes triggered by low intensity non-focused ultrasound (2013) J. Med. Imaging Health Inform., 3 (3), pp. 356-366
Datta, S., Correlation of cavitation with ultrasound enhancement of thrombolysis (2006) Ultrasound Med. Biol., 32 (8), pp. 1257-1267
Schroeder, A., Kost, J., Barenholz, Y., Ultrasound, liposomes, and drug delivery: Principles for using ultrasound to control the release of drugs from liposomes (2009) Chem. Phys. Lipids, 162 (12), pp. 1-16
Yudina, A., Ultrasound-mediated intracellular drug delivery using microbubbles and temperature-sensitive liposomes (2011) J. Control. Release, 155 (3), pp. 442-448
Schroeder, A., Controlling liposomal drug release with low frequency ultrasound: Mechanism and feasibility (2007) Langmuir, 23 (7), pp. 4019-4025
Afadzi, M., Mechanisms of the ultrasound-mediated intracellular delivery of liposomes and dextrans (2013) IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 60 (1), pp. 21-33
Staples, B.J., Role of frequency and mechanical index in ultrasonic-enhanced chemotherapy in rats (2009) Cancer Chemother. Pharmacol., 64 (3), pp. 593-600
Knodler, M., An analysis of toxicity in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck (R/M SCCHN) receiving cetuximab, fluorouracil and cisplatin alone or with docetaxel in a phase II clinical trial (CeFCiD) (2012) Onkologie, 35, p. 153
Fattahi, H., Magnetoliposomes as multimodal contrast agents for molecular imaging and cancer nanotheragnostics (2011) Nanomedicine, 6 (3), pp. 529-544
Aime, S., Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications (2009) Acc. Chem. Res., 42 (7), pp. 822-831
Terreno, E., Paramagnetic liposomes as innovative contrast agents for magnetic resonance (MR) molecular imaging applications (2008) Chem. Biodivers., 5 (10), pp. 1901-1912
Fossheim, S.L., Paramagnetic liposomes as MRI contrast agents: Influence of liposomal physicochemical properties on the in vitro relaxivity (1999) Magn. Reson. Imaging, 17 (1), pp. 83-89
Castelli, D.D., Metal containing nanosized systems for MR-molecular imaging applications (2008) Coord. Chem. Rev., 252 (2122), pp. 2424-2443
Rizzitelli, S., Giustetto, P., Boffa, C., Delli Castelli, D., Cutrin, J.C., Aime, S., Terreno, E., In vivo MRI visualization of release from liposomes triggered by local application of pulsed low intensity non focused ultrasound (2014) Nanomedicine, 10 (5), pp. 901-904
Barge, A., How to determine free Gd and free ligand in solution of Gd chelates. A technical note (2006) Contrast Media Mol. Imaging, 1 (5), pp. 184-188
Nanni, P., TS/A: A new metastasizing cell line from a BALB/c spontaneous mammary adenocarcinoma (1983) Clin. Exp. Metastasis, 1 (4), pp. 373-380
Steckner, M.C., Liu, B., Ying, L., A new single acquisition, two-image difference method for determining MR image SNR (2009) Med. Phys., 36 (2), pp. 662-671
Dietrich, O., Measurement of signal-to-noise ratios in MR images: Influence of multichannel coils, parallel imaging, and reconstruction filters (2007) J. Magn. Reson. Imaging, 26 (2), pp. 375-385
Henkelman, R.M., Measurement of signal intensities in the presence of noise in mr images (1985) Med. Phys., 12 (2), pp. 232-233
Castellano, G., Li, L.M., Cendes, F., Texture analysis of medical images (2004) Clin. Radiol., 59 (12), pp. 1061-1069
Haralick, R.M., Dinstein, I.H., Textural features for image classification (1973) IEEE Trans. Syst. Man Cybern., 3 (6), pp. 610-621. , SMC
Da, A.A.J.R., Quantification of histochemical staining by color deconvolution (2001) Anal. Quant. Cytol. Histol., 23 (4), pp. 291-299
Sumer, B., Gao, J. M., Theranostic nanomedicine for cancer (2008) Nanomedicine, 3 (2), pp. 137-140
Massoud, T. F., Gambhir, S. S., Molecular imaging in living subjects: Seeing fundamental biological processes in a new light (2003) Genes Dev., 17 (5), pp. 545-580
Jacobs, R. E., Cherry, S. R., Complementary emerging techniques: High-resolution PET and MRI (2001) Curr. Opin. Neurobiol., 11 (5), pp. 621-629
Manzoor, A. A., Overcoming limitations in nanoparticle drug delivery: Triggered, intravascular release to improve drug penetration into tumors (2012) Cancer Res., 72 (21), pp. 5566-5575
Ponce, A. M., Hyperthermia mediated liposomal drug delivery (2006) Int. J. Hyperth., 22 (3), pp. 205-213
Koning, G. A., Hyperthermia and thermosensitive liposomes for improved delivery of chemotherapeutic drugs to solid tumors (2010) Pharm. Res., 27 (8), pp. 1750-1754
Negussie, A. H., Formulation and characterisation of magnetic resonance imageable thermally sensitive liposomes for use with magnetic resonance-guided high intensity focused ultrasound (2011) Int. J. Hyperth., 27 (2), pp. 140-155
Lanza, G. M., Assessing the barriers to image-guided drug delivery (2014) Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 6 (1), pp. 1-14
Dewhirst, M. W., Novel Approaches to Treatment of Hepatocellular Carcinoma and Hepatic Metastases Using Thermal Ablation and Thermosensitive Liposomes (2013) Surgical Oncology Clinics of North America, 22 (3), pp. 545-561
McDaniel, J. R., Dewhirst, M. W., Chilkoti, A., Actively targeting solid tumours with thermoresponsive drug delivery systems that respond to mild hyperthermia (2013) Int. J. Hyperth., 29 (6), pp. 501-510
Dicheva, B. M., Koning, G. A., Targeted thermosensitive liposomes: An attractive novel approach for increased drug delivery to solid tumors (2014) Expert Opin. Drug Deliv., 11 (1), pp. 83-100
May, J. P., Li, S. D., Hyperthermia-induced drug targeting (2013) Expert Opin. Drug Deliv., 10 (4), pp. 511-527
Chen, X. Y., Gambhlr, S. S., Cheon, J., Theranostic nanomedicine (2011) Acc. Chem. Res., 44 (10). , p. 841
Lin, C. Y., Ultrasound sensitive eLiposomes containing doxorubicin for drug targeting therapy (2014) Nanomedicine, 10 (1), pp. 67-76
Lin, H. Y., Thomas, J. L., Factors affecting responsivity of unilamellar liposomes to 20 kHz ultrasound (2004) Langmuir, 20 (15), pp. 6100-6106
Evjen, T. J., In vivo monitoring of liposomal release in tumours following ultrasound stimulation (2013) Eur. J. Pharm. Biopharm., 84 (3), pp. 526-531
Staples, B. J., Role of frequency and mechanical index in ultrasonic-enhanced chemotherapy in rats (2009) Cancer Chemother. Pharmacol., 64 (3), pp. 593-600
Fossheim, S. L., Paramagnetic liposomes as MRI contrast agents: Influence of liposomal physicochemical properties on the in vitro relaxivity (1999) Magn. Reson. Imaging, 17 (1), pp. 83-89
Castelli, D. D., Metal containing nanosized systems for MR-molecular imaging applications (2008) Coord. Chem. Rev., 252 (2122), pp. 2424-2443
Steckner, M. C., Liu, B., Ying, L., A new single acquisition, two-image difference method for determining MR image SNR (2009) Med. Phys., 36 (2), pp. 662-671
Henkelman, R. M., Measurement of signal intensities in the presence of noise in mr images (1985) Med. Phys., 12 (2), pp. 232-233
Haralick, R. M., Dinstein, I. H., Textural features for image classification (1973) IEEE Trans. Syst. Man Cybern., 3 (6), pp. 610-621. , SMC
Da, A. A. J. R., Quantification of histochemical staining by color deconvolution (2001) Anal. Quant. Cytol. Histol., 23 (4), pp. 291-299
Sonosensitive theranostic liposomes for preclinical in vivo MRI-guided visualization of doxorubicin release stimulated by pulsed low intensity non-focused ultrasound
Sonosensitive theranostic liposomes for preclinical in vivo MRI-guided visualization of doxorubicin release stimulated by pulsed low intensity non-focused ultrasound
Sonosensitive theranostic liposomes for preclinical in vivo MRI-guided visualization of doxorubicin release stimulated by pulsed low intensity non-focused ultrasound
Kim YH, Shin SW, Pellicano R, Fagoonee S, Choi IJ, Kim YI, Park B, Choi JM, Kim SG, Choi J, Park JY, Oh S, Yang HJ, Lim JH, Im JP, Kim JS, Jung HC, Ponzetto A, Figura N, Malfertheiner P, Choi IJ, Kook MC, Kim YI, Cho SJ, Lee JY, Kim CG, Park B, Nam BH, Bae SE, Choi KD, Choe J, Kim SO, Na HK, Choi JY, Ahn JY, Jung KW, Lee J, Kim DH, Chang HS, Song HJ, Lee GH, Jung HY, Seta T, Takahashi Y, Noguchi Y, Shikata S, Sakai T, Sakai K, Yamashita Y, Nakayama T, Leja M, Park JY, Murillo R, Liepniece-karele I, Isajevs S, Kikuste I, Rudzite D, Krike P, Parshutin S, Polaka I, Kirsners A, Santare D, Folkmanis V, Daugule I, Plummer M, Herrero R, Tsukamoto T, Nakagawa M, Kiriyama Y, Toyoda T, Cao X, Corral JE, Mera R, Dye CW, Morgan DR, Lee YC, Lin JT, Garcia Martin R, Matia Cubillo A, Lee SH, Park JM, Han YM, Ko WJ, Hahm KB, Leontiadis GI, Ford AC, Ichinose M, Sugano K, Jeong M, Park JM, Han YM, Park KY, Lee DH, Yoo JH, Cho JY, Hahm KB, Bang CS, Baik GH, Shin IS, Kim JB, Suk KT, Yoon JH, Kim YS, Kim DJ * Helicobacter pylori Eradication for Prevention of Metachronous Recurrence after Endoscopic Resection of Early Gastric Cancer(297 views) N Engl J Med (ISSN: 0028-4793, 0028-4793linking, 1533-4406electronic), 2015 Jun; 30642104201566393291: 749-756. Impact Factor:59.558 ViewExport to BibTeXExport to EndNote