Structural Model of the hUbA1-UbcH10 Quaternary Complex: In Silico and Experimental Analysis of the Protein-Protein Interactions between E1, E2 and Ubiquitin
Structural Model of the hUbA1-UbcH10 Quaternary Complex: In Silico and Experimental Analysis of the Protein-Protein Interactions between E1, E2 and Ubiquitin(434 views) Correale S, de Paola I, Morgillo CM, Federico A, Zaccaro L, Pallante P, Galeone A, Fusco A, Pedone E, Luque FJ, Catalanotti B
Plosone (ISSN: 1932-6203, 1932-6203electronic, 1932-6203linking), 2014 Nov 6; 9(11): e112082-e112082.
Kedrion S.p.A., Sant 'Antimo (Na), Italy.
Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Napoli, Italy.
Dipartimento di Farmacia, Universita degli Studi di Napoli Federico II, Napoli, Italy.
Istituto di Endocrinologia ed Oncologia Sperimentale Consiglio Nazionale delle Ricerche, Napoli, Italy.
Departament de Fisicoquimica and Institut de Biomedicina (IBUB), Facultat de Farmacia, Universitat de Barcelona, Santa Coloma de Gramenet, Spain.
Kedrion S. p. A., Sant 'Antimo (Na), Italy.
Kedrion S. p. A. Sant 'Antimo (Na), Italy
Kedrion S.p.A.Sant 'Antimo (Na), Italy
References: Rape, M., Kirschner, M. W., Autonomous regulation of the anaphase-promoting complex couples mitosis to S-phase entry (2004) Nature, 432, pp. 588-59
De Gramont, A., Ganier, O., Cohen-Fix, O., Before and after the spindle assembly checkpoint-an APC/C point of view (2006) Cell Cycle, 5, pp. 2168-2171
Pallante, P., Berlingieri, M. T., Troncone, G., Kruhoffer, M., Orntoft, T. F., UbcH10 overexpression may represent a marker of anaplastic thyroid carcinomas (2005) Br J Cancer, 93, pp. 464-471
Fujita, T., Liu, W., Doihara, H., Date, H., Wan, Y., Dissection of the APCCdh1-skp2 cascade in Breast cancer (2008) Clin Cancer Res, 14, pp. 1966-1975
Donato, G., Iofrida, G., Lavano, A., Volpentesta, G., Signorelli, F., Analysis of UbcH10 expression represents a useful tool for the diagnosis and therapy of astrocytic tumors (2008) Clin Neuropathol, 27, pp. 219-223
Troncone, G., Guerriero, E., Pallante, P., Berlingieri, M. T., Ferraro, A., UbcH10 expression in human lymphomas (2009) Histopathology, 54, pp. 731-740
Haas, A. L., Warms, J. V., Hershko, A., Rose, I. A., Ubiquitin-activating enzyme. Mechanism and role in protein-ubiquitin conjugation (1982) J Biol Chem, 257, pp. 2543-2548
Kleiger, G., Mayor, T., Perilous journey: A tour of the ubiquitin-proteasome system (2014) Trends Cell Biol, 24, pp. 352-359
Jin, J., Li, X., Gygi, S. P., Harper, J. W., Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging (2007) Nature, 447, pp. 1135-1138
Fang, S., Weissman, A. M., A field guide to ubiquitylation (2004) Cell Mol Life Sci, 61, pp. 1546-1561
Schulman, B. A., Harper, J. W., Ubiquitin-like protein activation by E1 enzymes: The apex for downstream signalling pathways (2009) Nat Rev Mol Cell Biol, 10, pp. 319-331
Huang, D. T., Hunt, H. W., Zhuang, M., Ohi, M. D., Holton, J. M., Basis for a ubiquitin-like protein thioester switch toggling E1-E2 affinity (2007) Nature, 445, pp. 394-398
Olsen, S. K., Lima, C. D., Structure of a ubiquitin E1-E2 complex: Insights to E1-E2 thioesther transfer (2013) Mol Cell, 49, pp. 884-896
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., Lipman, D. J., Basic local alignment search tool (1990) J Mol Biol, 215, pp. 403-410
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., The protein data bank (2000) Nuc Acids Res, 28, pp. 235-242
Szczepanowski, R. H., Filipek, R., Bochtler, M., Crystal structure of a fragment of mouse ubiquitin-activating enzyme (2005) J Biol Chem, 280, pp. 22006-22011
Lee, I., Schindelin, H., Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes (2008) Cell, 134, pp. 268-278
Jaremko, L., Jaremko, M., Wojciechowski, W., Filipek, R., Szczepanowski, R. H., NMR assignment of a structurally uncharacterised fragment of recombinant mouse ubiquitin-activating enzyme (2006) J Biomol NMR, 36, p. 43
Thompson, J. D., Higgins, D. G., Gibson, T. J., CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice (1994) Nuc Acids Res, 22, pp. 4673-4680
Bordoli, L., Kiefer, F., Arnold, K., Benkert, P., Battey, J., Protein structure homology modeling using SWISS-MODEL workspace (2009) Nat Protoc., 4 (1), pp. 1-13
Kabsch, W., Sander, C., (1983) Biopolymers, 22, pp. 2577-2637
Peitsch, M. C., ProMod and swiss-model: Internet-based tools for automated comparative protein modelling (1996) Biochem Soc Trans, 24, pp. 274-279
Van Gunsteren, W. F., Berendsen, H. J. C., Computer simulation of molecular dynamics: Methodology, applications, and perspective in chemistr angew (1990) Chem Int Ed., 29, pp. 992-1023
Luthy, R., Bowie, J. U., Eisenberg, D., Assessment of protein models with three-dimensional profiles (1992) Nature, 356, pp. 83-85
Colovos, C., Yeates, T. O., Verification of protein structures: Patterns of nonbonded atomic interactions (1993) Prot Sci, 2, pp. 1511-1519
Laskowski, R. A., MacArthur, M. W., Moss, D. S., Thornton, J. M., PROCHECK: A program to check the stereochemical quality of protein structures (1993) J Appl Cryst, 26, pp. 283-291
Hooft, R. W. W., Vriend, G., Sander, C., Abola, E. E., Errors in protein structure (1996) Nature, 381, p. 272
De Vries, S. J., Van Dijk, M., Bonvin, A. M., The HADDOCK web server for data-driven biomolecular docking (2010) Nat Protoc, 5, pp. 883-897
Lyskov, S., Gray, J. J., The RosettaDock server for local protein-protein docking (2008) Nuc Acids Res, 36, pp. W233-W238
Tokg z, Z., Siepmann, T. J., Streich, F., Jr., Kumar, B., Klein, J. M., E1-E2 interactions in ubiquitin and nedd8 ligation pathways (2012) J Biol Chem, 287, pp. 15512-15522
Bezsonova, I., Bruce, M. C., Wiesner, S., Lin, H., Rotin, D., Interactions between the three CIN85 SH3 domains and ubiquitin: Implications for CIN85 ubiquitination (2008) Biochemistry, 47, pp. 8937-8949
Lin, Y., Hwang, W. C., Basavappa, R., Structural and functional analysis of the human mitotic-specific ubiquitin-conjugating enzyme, UbcH10 (2002) J Biol Chem, 277, pp. 21913-21921
Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., Comparison of multiple amber force fields and development of improved protein backbone parameters (2006) Proteins, 65, pp. 712-725
N im, M., Bhat, S., Rankin, K. N., Dennis, S., Chowdhury, S. F., Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 1. Exploring the parameter space (2007) J Chem Inf Model, 47, pp. 122-133
Cui, Q., Sulea, T., Schrag, J. D., Munger, C., Hung, M. N., Molecular dynamics and solvated interaction energy studies of protein-protein interactions: The MP1-p14 scaffolding complex (2008) J Mol Biol, 379, pp. 787-802
Kortemme, T., Kim, D. E., Baker, D., Computational alanine scanning of protein-protein interfaces (2004) Sci STKE, 219, p. pl2
Huo, S., Massova, I., Kollman, P. A., Computational alanine scanning of the 1: 1 human growth hormone-receptor complex (2002) J Comput Chem, 23, pp. 15-27
Dikic, I., Wakatsuki, S., Walters, K. J., Ubiquitin-binding domains - From structures to functions (2009) Nat Rev Mol Cell Biol, 10, pp. 659-671
Sch fer, A., Kuhn, M., Schindelin, H., Structure of the ubiquitin-activating enzyme loaded with two ubiquitin molecules (2014) Acta Cryst, D70, pp. 1311-1320
Pitluk, Z. W., McDonough, M., Sangan, P., Gonda, D. K., Novel CDC34 (UBC3) ubiquitin-conjugating enzyme mutants obtained by charge-to-alanine scanning mutagenesis (1995) Mol Cell Biol, 15, pp. 1210-1219
Sullivan, M. L., Vierstra, R. D., Cloning of a 16-kDa ubiquitin carrier protein from wheat and arabidopsis thaliana. Identification of functional domains by in vitro mutagenesis (1991) J Biol Chem, 266, pp. 23878-23885
Bencsath, K. P., Podgorski, M. S., Pagala, V. R., Slaughter, C. A., Schulman, B. A., Identification of a multifunctional binding site on ubc9p required for smt3p conjugation (2002) J Biol Chem, 277, pp. 47938-47945
Poornam, G., Matsumoto, A., Ishida, H., Hayward, S., A method for the analysis of domain movements in large biomolecular complexes (2009) Proteins, 76, pp. 201-221
Berlingieri, M.T., Pallante, P., Guida, M., Nappi, C., Masciullo, V., UbcH10 expression may be a useful tool in the prognosis of ovarian carcinomas (2007) Oncogene, 26, pp. 2136-2140
Haas, A.L., Warms, J.V., Hershko, A., Rose, I.A., Ubiquitin-activating enzyme. Mechanism and role in protein-ubiquitin conjugation (1982) J Biol Chem, 257, pp. 2543-2548
Schulman, B.A., Harper, J.W., Ubiquitin-like protein activation by E1 enzymes: The apex for downstream signalling pathways (2009) Nat Rev Mol Cell Biol, 10, pp. 319-331
Huang, D.T., Hunt, H.W., Zhuang, M., Ohi, M.D., Holton, J.M., Basis for a ubiquitin-like protein thioester switch toggling E1-E2 affinity (2007) Nature, 445, pp. 394-398
Olsen, S.K., Lima, C.D., Structure of a ubiquitin E1-E2 complex: Insights to E1-E2 thioesther transfer (2013) Mol Cell, 49, pp. 884-896
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., Basic local alignment search tool (1990) J Mol Biol, 215, pp. 403-410
Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., The protein data bank (2000) Nuc Acids Res, 28, pp. 235-242
Szczepanowski, R.H., Filipek, R., Bochtler, M., Crystal structure of a fragment of mouse ubiquitin-activating enzyme (2005) J Biol Chem, 280, pp. 22006-22011
Thompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice (1994) Nuc Acids Res, 22, pp. 4673-4680
Peitsch, M.C., ProMod and swiss-model: Internet-based tools for automated comparative protein modelling (1996) Biochem Soc Trans, 24, pp. 274-279
Van Gunsteren, W.F., Berendsen, H.J.C., Computer simulation of molecular dynamics: Methodology, applications, and perspective in chemistr angew (1990) Chem Int Ed., 29, pp. 992-1023
Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M., PROCHECK: A program to check the stereochemical quality of protein structures (1993) J Appl Cryst, 26, pp. 283-291
Hooft, R.W.W., Vriend, G., Sander, C., Abola, E.E., Errors in protein structure (1996) Nature, 381, p. 272
De Vries, S.J., Van Dijk, M., Bonvin, A.M., The HADDOCK web server for data-driven biomolecular docking (2010) Nat Protoc, 5, pp. 883-897
Tokgöz, Z., Siepmann, T.J., Streich, F., Jr., Kumar, B., Klein, J.M., E1-E2 interactions in ubiquitin and nedd8 ligation pathways (2012) J Biol Chem, 287, pp. 15512-15522
Lin, Y., Hwang, W.C., Basavappa, R., Structural and functional analysis of the human mitotic-specific ubiquitin-conjugating enzyme, UbcH10 (2002) J Biol Chem, 277, pp. 21913-21921
Näim, M., Bhat, S., Rankin, K.N., Dennis, S., Chowdhury, S.F., Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 1. Exploring the parameter space (2007) J Chem Inf Model, 47, pp. 122-133
Schäfer, A., Kuhn, M., Schindelin, H., Structure of the ubiquitin-activating enzyme loaded with two ubiquitin molecules (2014) Acta Cryst, D70, pp. 1311-1320
Pitluk, Z.W., McDonough, M., Sangan, P., Gonda, D.K., Novel CDC34 (UBC3) ubiquitin-conjugating enzyme mutants obtained by charge-to-alanine scanning mutagenesis (1995) Mol Cell Biol, 15, pp. 1210-1219
Sullivan, M.L., Vierstra, R.D., Cloning of a 16-kDa ubiquitin carrier protein from wheat and arabidopsis thaliana. Identification of functional domains by in vitro mutagenesis (1991) J Biol Chem, 266, pp. 23878-23885
Bencsath, K.P., Podgorski, M.S., Pagala, V.R., Slaughter, C.A., Schulman, B.A., Identification of a multifunctional binding site on ubc9p required for smt3p conjugation (2002) J Biol Chem, 277, pp. 47938-47945
Structural Model of the hUbA1-UbcH10 Quaternary Complex: In Silico and Experimental Analysis of the Protein-Protein Interactions between E1, E2 and Ubiquitin
UbcH10 is a component of the Ubiquitin Conjugation Enzymes (Ubc; E2) involved in the ubiquitination cascade controlling the cell cycle progression, whereby ubiquitin, activated by E1, is transferred through E2 to the target protein with the involvement of E3 enzymes. In this work we propose the first three dimensional model of the tetrameric complex formed by the human UbA1 (E1), two ubiquitin molecules and UbcH10 (E2), leading to the transthiolation reaction. The 3D model was built up by using an experimentally guided incremental docking strategy that combined homology modeling, proteinprotein docking and refinement by means of molecular dynamics simulations. The structural features of the in silico model allowed us to identify the regions that mediate the recognition between the interacting proteins, revealing the active role of the ubiquitin crosslinked to E1 in the complex formation. Finally, the role of these regions involved in the E1-E2 binding was validated by designing short peptides that specifically interfere with the binding of UbcH10, thus supporting the reliability of the proposed model and representing valuable scaffolds for the design of peptidomimetic compounds that can bind selectively to Ubcs and inhibit the ubiquitylation process in pathological disorders.
Structural Model of the hUbA1-UbcH10 Quaternary Complex: In Silico and Experimental Analysis of the Protein-Protein Interactions between E1, E2 and Ubiquitin
No results.
Structural Model of the hUbA1-UbcH10 Quaternary Complex: In Silico and Experimental Analysis of the Protein-Protein Interactions between E1, E2 and Ubiquitin
Petraglia F, Singh AA, Carafa V, Nebbioso A, Conte M, Scisciola L, Valente S, Baldi A, Mandoli A, Petrizzi VB, Ingenito C, De Falco S, Cicatiello V, Apicella I, Janssen-megens EM, Kim B, Yi G, Logie C, Heath S, Ruvo M, Wierenga ATJ, Flicek P, Yaspo ML, Della Valle V, Bernard O, Tomassi S, Novellino E, Feoli A, Sbardella G, Gut I, Vellenga E, Stunnenberg HG, Mai A, Martens JHA, Altucci L * Combined HAT/EZH2 modulation leads to cancer-selective cell death(284 views) Oncotarget (ISSN: 1949-2553electronic, 1949-2553linking), 2018 May 22; 9(39): 25630-25646. Impact Factor:5.008 ViewExport to BibTeXExport to EndNote