Spectroscopic and crystallographic characterization of a tetrameric hemoglobin oxidation reveals structural features of the functional intermediate relaxed/tense state
Spectroscopic and crystallographic characterization of a tetrameric hemoglobin oxidation reveals structural features of the functional intermediate relaxed/tense state(400 views) Vitagliano L, Vergara A, Bonomi G, Merlino A, Verde C, Di Prisco G, Howes BD, Smulevich G, Mazzarella L
Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy
Department of Chemistry, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy
Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy
Gunasekaran, K., Ma, B., Nussinov, R., (2004) Proteins, 57, pp. 433-443
Kuriyan, J., Eisenberg, D., (2007) Nature, 450, pp. 983-990
Eaton, W.A., Henry, E.R., Hofrichter, J., Mozzarelli, A., (1999) Nat. Struct. Biol, 6, pp. 351-358
Bellelli, A., Brunori, M., Miele, A.E., Panetta, G., Vallone, B., (2006) Curr. Protein Pept. Sci, 7, pp. 17-45
Yonetani, T., Tsuneshige, A., (2003) C. R. Biol, 326, pp. 523-532
Barrick, D., Ho, N.T., Simplaceanu, V., Dahlquist, F.W., Ho, C., (1997) Nat. Struct. Biol, 4, pp. 78-83
Perutz, M.F., Wilkinson, A.J., Paoli, M., Dodson, G.G., (1998) Annu. Rev. Biophys. Biomol. Struct, 27, pp. 1-34
Perutz, M.F., (1970) Nature, 228, pp. 726-739
Safo, M.K., Abraham, D.J., (2005) Biochemistry, 44, pp. 8347-8359
Tame, J.R., (1999) Trends Biochem. Sci, 24, pp. 372-377
Silva, M.M., Rogers, P.H., Arnone, A., (1992) J. Biol. Chem, 267, pp. 17248-17256
Srinivasan, R., Rose, G.D., (1994) Proc. Natl. Acad. Sci. U.S.A, 91, pp. 11113-11117
Sutherland-Smith, A.J., Baker, H.M., Hofmann, O.M., Brittain, T., Baker, E.N., (1998) J. Mol. Biol, 280, pp. 475-484
Mueser, T.C., Rogers, P.H., Arnone, A., (2000) Biochemistry, 39, pp. 15353-15364
Schumacher, M.A., Zheleznova, E.E., Poundstone, K.S., Kluger, R., Jones, R.T., Brennan, R.G., (1997) Proc. Natl. Acad. Sci. U.S.A, 94, pp. 7841-7844
Schumacher, M.A., Dixon, M.M., Kluger, R., Jones, R.T., Brennan, R.G., (1995) Nature, 375, pp. 84-87
Kavanaugh, J.S., Rogers, P.H., Arnone, A., (2005) Biochemistry, 44, pp. 6101-6121
Park, S.Y., Yokoyama, T., Shibayama, N., Shiro, Y., Tame, J.R., (2006) J. Mol. Biol, 360, pp. 690-701
Viappiani, C., Bettati, S., Bruno, S., Ronda, L., Abbruzzetti, S., Mozzarelli, A., Eaton, W.A., (2004) Proc. Natl. Acad. Sci. U.S.A, 101, pp. 14414-14419
Woods, V. L., Jr Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 7057-7062Balakrishnan, G., Case, M.A., Pevsner, A., Zhao, X., Tengroth, C., McLendon, G.L., Spiro, T.G., (2004) J. Mol. Biol, 340, pp. 843-856
Jayaraman, V., Rodgers, K.R., Mukerji, I., Spiro, T.G., (1995) Science, 269, pp. 1843-1848
Lukin, J.A., Kontaxis, G., Simplaceanu, V., Yuan, Y., Bax, A., Ho, C., (2003) Proc. Natl. Acad. Sci. U.S.A, 100, pp. 517-520
Knapp, J.E., Pahl, R., Srajer, V., Royer Jr., W.E., (2006) Proc. Natl. Acad. Sci. U.S.A, 103, pp. 7649-7654
Bourgeois, D., Vallone, B., Arcovito, A., Sciara, G., Schotte, F., Anfinrud, P.A., Brunori, M., (2006) Proc. Natl. Acad. Sci. U.S.A, 103, pp. 4924-4929
Schmidt, M., Nienhaus, K., Pahl, R., Krasselt, A., Anderson, S., Parak, F., Nienhaus, G.U., Srajer, V., (2005) Proc. Natl. Acad. Sci. U.S.A, 102, pp. 11704-11709
Ostermann, A., Waschipky, R., Parak, F.G., Nienhaus, G.U., (2000) Nature, 404, pp. 205-208
Adachi, S., Park, S.Y., Tame, J.R., Shiro, Y., Shibayama, N., (2003) Proc. Natl. Acad. Sci. U.S.A, 100, pp. 7039-7044
Vitagliano, L., Bonomi, G., Riccio, A., di Prisco, G., Smulevich, G., Mazzarella, L., (2004) Eur. J. Biochem, 271, pp. 1651-1659
Riccio, A., Vitagliano, L., di Prisco, G., Zagari, A., Mazzarella, L., (2002) Proc. Natl. Acad. Sci. U.S.A, 99, pp. 9801-9806
Vergara, A., Franzese, M., Merlino, A., Vitagliano, L., Verde, C., di Prisco, G., Lee, H.C., Mazzarella, L., (2007) Biophys. J, 93, pp. 2822-2829
D'Avino, R., Caruso, C., Tamburrini, M., Romano, M., Rutigliano, B., Polverino de Laureto, P., Camardella, L., di Prisco, G., (1994) J. Biol. Chem, 269, pp. 9675-9681
Otwinowsky, Z., Minor, W., (1997) Methods Enzymol, 276, pp. 307-326
Paoli, M., Liddington, R., Tame, J., Wilkinson, A., Dodson, G., (1996) J. Mol. Biol, 256, pp. 775-792
Park, S.Y., Shibayama, N., Hiraki, T., Tame, J.R., (2004) Biochemistry, 43, pp. 8711-8717
Shibayama, N., Miura, S., Tame, J.R., Yonetani, T., Park, S.Y., (2002) J. Biol. Chem, 277, pp. 38791-38796
Luisi, B., Liddington, B., Fermi, G., Shibayama, N., (1990) J. Mol. Biol, 214, pp. 7-14
Swain, J. F., Gierasch, L. M., (2006) Curr. Opin. Struct. Biol, 16, pp. 102-10
Eaton, W. A., Henry, E. R., Hofrichter, J., Mozzarelli, A., (1999) Nat. Struct. Biol, 6, pp. 351-358
Perutz, M. F., Wilkinson, A. J., Paoli, M., Dodson, G. G., (1998) Annu. Rev. Biophys. Biomol. Struct, 27, pp. 1-34
Perutz, M. F., (1970) Nature, 228, pp. 726-739
Safo, M. K., Abraham, D. J., (2005) Biochemistry, 44, pp. 8347-8359
Tame, J. R., (1999) Trends Biochem. Sci, 24, pp. 372-377
Silva, M. M., Rogers, P. H., Arnone, A., (1992) J. Biol. Chem, 267, pp. 17248-17256
Mueser, T. C., Rogers, P. H., Arnone, A., (2000) Biochemistry, 39, pp. 15353-15364
Schumacher, M. A., Zheleznova, E. E., Poundstone, K. S., Kluger, R., Jones, R. T., Brennan, R. G., (1997) Proc. Natl. Acad. Sci. U. S. A, 94, pp. 7841-7844
Kavanaugh, J. S., Rogers, P. H., Arnone, A., (2005) Biochemistry, 44, pp. 6101-6121
Park, S. Y., Yokoyama, T., Shibayama, N., Shiro, Y., Tame, J. R., (2006) J. Mol. Biol, 360, pp. 690-701
Lukin, J. A., Kontaxis, G., Simplaceanu, V., Yuan, Y., Bax, A., Ho, C., (2003) Proc. Natl. Acad. Sci. U. S. A, 100, pp. 517-520
Knapp, J. E., Pahl, R., Srajer, V., Royer Jr., W. E., (2006) Proc. Natl. Acad. Sci. U. S. A, 103, pp. 7649-7654
Sheldrick, G. M., Schneider, T. R., (1997) Methods Enzymol, 277, pp. 319-343
Jones, T. A., Zou, J. Y., Cowan, S. W., Kjeldgaard, M., (1991) Acta Crystallogr., Sect. A: Found. Crystallogr, 47, pp. 110-119
Laskowski, R. A., MacArthur, M. W., Moss, M. D., Thorton, J. M., (1993) J. Appl. Crystallogr, 26, pp. 283-291
Spiro, T. G., (1985) Adv. Protein Chem, 37, pp. 111-159
Edelstein, S. J., (1996) J. Mol. Biol, 257, pp. 737-744
Safo, M. K., Burnett, J. C., Musayev, F. N., Nokuri, S., Abraham, D. J., (2002) Acta Crystallogr., Sect. D: Biol. Crystallogr, 58, pp. 2031-2037
Park, S. Y., Shibayama, N., Hiraki, T., Tame, J. R., (2004) Biochemistry, 43, pp. 8711-8717
Spectroscopic and crystallographic characterization of a tetrameric hemoglobin oxidation reveals structural features of the functional intermediate relaxed/tense state
Tetrameric hemoglobins represent the most commonly used model for the description of the basic concepts of protein allostery. The classical stereochemical model assumes a concerted transition of the protein, upon oxygen release, from the relaxed (R) to the tense (T) state. Despite the large amount of data accumulated on the end-points of the transition, scarce structural information is available on the intermediate species along the pathway. Here we report a spectroscopic characterization of the autoxidation process of the Trematomus newnesi major Hb component and the atomic resolution structure (1.25 angstrom) of an intermediate form along the pathway characterized by a different binding and oxidation state of the a and beta chains. In contrast to the alpha-heme iron, which binds a CO molecule, the beta iron displays a pentacoordinated oxidized state, which is rare in tetrameric hemoglobins. Interestingly, the information provided by the present analysis is not limited to the characterization of the peculiar oxidation process of Antarctic fish hemoglobins. Indeed, this structure represents the most detailed snapshot of hemoglobin allosteric transition hitherto achieved. Upon ligand release at the beta heme, a cascade of structural events is observed. Notably, several structural features of the tertiary structure of the alpha and beta chains closely resemble those typically observed in the deoxygenated state. The overall quaternary structure also becomes intermediate between the R and the T state. The analysis of the alterations induced by the ligand release provides a clear picture of the temporal sequence of the events associated with the transition. The implications of the present findings have also been discussed in the wider context of tetrameric Hbs.
Spectroscopic and crystallographic characterization of a tetrameric hemoglobin oxidation reveals structural features of the functional intermediate relaxed/tense state
Spectroscopic and crystallographic characterization of a tetrameric hemoglobin oxidation reveals structural features of the functional intermediate relaxed/tense state