Ist. di Biostrutture e Bioimmagini, CNR, Napoli, Italy
Dipartimento di Chimica, Univ. Studi di Napoli 'Federico II', Complesso Univ. di M.S. Angelo, Napoli, Italy
Ist. di Biochimica delle Proteine, CNR, Napoli, Italy
Istituto di Biostrutture e Bioimmagini, CNR, Napoli, Italy.,
References: Royer Jr., W.E., Knapp, J.E., Strand, K., Heaslet, H.A., Cooperative hemoglobins: Conserved fold, diverse quaternary assemblies and allosteric mechanisms (2001) Trends Biochem. Sci., 26, pp. 297-30
Di Prisco, G., Molecular adaptations of Antarctic fish haemoglobins (1998) Fishes of Antarctica: Biological Overview, pp. 339-353. , di Prisco G., Pisano E. & Clark A., eds, Springer, Milan
Di Prisco, G., D'Avino, R., Caruso, C., Tamburrini, M., Camardella, L., Rutigliano, B., Carratore, V., Romano, M., The biochemistry of oxygen transport in red-blooded Antarctic fish (1991) Biology of Antarctic Fish, pp. 263-281. , di Prisco, G., Maresca, B. & Tota, B., eds, Springer-Verlag, Milan
Ruud, J.T., Vertebrates without erythrocytes and blood pigment (1954) Nature (London), 173, pp. 848-850
Di Prisco, G., Macdonald, J.A., Brunori, M., Antarctic fishes survive exposure to carbon monoxide (1992) Experientia, 48, pp. 473-475
Camardella, L., Caruso, C., D'Avino, R., Di Prisco, G., Rutigliano, B., Tamburrini, M., Fermi, G., Perutz, M.F., Haemoglobin of the antarctic fish Pagothenia bernacchii. Amino acid sequence, oxygen equilibria and crystal structure of its carbonmonoxy derivative (1992) J. Mol. Biol., 224, pp. 449-460
Riccio, A., Vitagliano, L., Di Prisco, G., Zagari, A., Mazzarella, L., Liganded and unliganded forms of Antarctic fish haemoglobins in polyethylene glycol: Crystallization of an R-state haemichrome intermediate (2001) Acta Crystallogr., D57, pp. 1144-1146
Baldwin, J., Chothia, C., Haemoglobin: The structural changes related to ligand binding and its allosteric mechanism (1979) J. Mol. Biol., 129, pp. 175-220
Perutz, M.F., Nature of haem-haem interaction (1972) Nature (London), 237, pp. 495-499
Tamburrini, M., Brancaccio, A., Ippoliti, R., Di Prisco, G., The amino acid sequence and oxygen-binding properties of the single hemoglobin of the cold-adapted Antarctic teleost Gymnodraco acuticeps (1992) Arch. Biochem. Biophys., 292, pp. 295-302
Perez, J.E., Maclean, N., Multiple globins and haemoglobins in four species of grey mullet (Mugilidae, Teleosta) (1976) Comp. Biochem. Physiol. B, 53, pp. 465-468
Otwinowski, Z., Minor, W., Processing of X-ray diffraction data collected in oscillation mode (1997) Methods Enzymol., 276, pp. 307-326
Mazzarella, L., Di D'Avino, R., Di Prisco, G., Savino, C., Vitagliano, L., Moody, P.C.E., Zagari, A., Crystal structure of Trematomus newnesi haemoglobin re-opens the root effect question (1999) J. Mol. Biol., 287, pp. 897-906
Navaza, J., AMoRe an automated package for molecular replacement (1994) Acta Crystallogr., A50, pp. 157-163
Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.-S., Warren, G.L., Crystallography & NMR system: A new software suite for macromolecular structure determination (1998) Acta Crystallogr., D54, pp. 905-921
Jones, T.A., Zou, J.Y., Cowan, S.W., Kjeldgaard, M., Improved methods for binding protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr., A47, pp. 110-119
Ito, N., Komiyama, N.H., Fermi, G., Structure of deoxyhaemoglobin of the antarctic fish Pagothenia bernacchii with an analysis of the structural basis of the root effect by comparison of the liganded and unliganded haemoglobin structures (1995) J. Mol. Biol., 250, pp. 648-658
Schneider, T.R., Objective comparison of protein structures: Error-scaled difference distance matrices (2000) Acta Crystallogr., D56, pp. 714-721
Antonini, E., Brunori, M., (1971) Hemoglobin and Myoglobin in Their Reactions with Ligands, , North-Holland Publishers Co, Amsterdam
Feis, A., Marzocchi, M.P., Paoli, M., Smulevich, G., Spin state and axial ligand bonding in the hydroxide complexes of metmyoglobin, methemoglobin, and horseradish peroxidase at room and low temperatures (1994) Biochemistry, 33, pp. 4577-4583
Jensen, F.B., Comparative analysis of autoxidation of haemoglobin (2001) J. Exp. Biol., 204, pp. 2029-2033
Wilson Jr., R.R., Knowles, F.C., Temperature adaptation of fish hemoglobins reflected in rates of autoxidation (1987) Arch. Biochem. Biophys., 255, pp. 210-213
Perutz, M.F., Heidner, E.J., Ladner, J.E., Beetlestone, J.G., Ho, C., Slade, E.F., Influence of globin structure on the state of the heme. 3. Changes in heme spectra accompanying allosteric transitions in methemoglobin and their implications for heme-heme interaction (1974) Biochemistry, 13, pp. 2187-2200
Stam, W.T., Beintema, J.J., D'Avino, R., Tamburrini, M., Di Prisco, G., Molecular evolution of hemoglobins of Antarctic fishes (Notothenioidei) (1997) J. Mol. Evol., 45, pp. 437-445
Rifkind, J.M., Abugo, O., Levy, A., Heim, J., Detection, formation, and relevance of hemichromes and hemochromes (1994) Methods Enzymol., 231, pp. 449-480
Rachmilewitz, E.A., Peisach, J., Blumberg, W.E., Studies on the stability of oxyhemoglobin A and its constituent chains and their derivatives (1971) J. Biol. Chem., 246, pp. 3356-3366
Hargrove, M.S., Brucker, E.A., Stec, B., Sarath, G., Arredondo-Peter, R., Klucas, R.V., Olson, J.S., Phillips Jr., G.N., Crystal structure of a nonsymbiotic plant hemoglobin (2000) Struct. Fold. Des., 8, pp. 1005-1014
Robinson, V.L., Smith, B.B., Arnone, A., A pH-dependent aquomet-to-hemichrome transition in crystalline horse methemoglobin (2003) Biochemistry, 42, pp. 10113-10125
Pesce, A., Dewilde, S., Nardini, M., Moens, L., Ascenzi, P., Hankeln, T., Burmester, T., Bolognesi, M., Human brain neuroglobin structure reveals a distinct mode of controlling oxygen affinity (2003) Structure, 11, pp. 1087-1095
Derewenda, Z., Dodson, G., Emsley, P., Harris, D., Nagai, K., Perutz, M., Renaud, J.P., Reynaud, J.P., Stereochemistry of carbon monoxide binding to normal human adult and Cowtown haemoglobins (1990) J. Mol. Biol., 211, pp. 515-519
Trent III, J.T., Watts, R.A., Hargrove, M.S., Human neuroglobin, a hexacoordinate hemoglobin that reversibly binds oxygen (2001) J. Biol. Chem., 276, pp. 30106-30110
Hvitved, A.N., Trent III, J.T., Premer, S.A., Hargrove, M.S., Ligand binding and hexacoordination in synechocystis hemoglobin (2001) J. Biol. Chem., 276, pp. 34714-34721
Wittenberg, J.B., Bolognesi, M., Wittenberg, B.A., Guertin, M., Truncated hemoglobins: A new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants (2002) J. Biol. Chem., 277, pp. 871-874
Duff, S.M., Wittenberg, J.B., Hill, R.D., Expression, purification, and properties of recombinant barley (Hordeum sp.) hemoglobin. Optical spectra and reactions with gaseous ligands (1997) J. Biol. Chem., 272, pp. 16746-16752
Svistunenko, D.A., Sharpe, M.A., Nicholls, P., Blenkinsop, C., Davies, N.A., Dunne, J., Wilson, M.T., Cooper, C.E., The pH dependence of naturally occurring low-spin forms of methaemoglobin and metmyoglobin: An EPR study (2000) Biochem. J., 351, pp. 595-605
Graham, M.S., Fletcher, G.L., High concentrations of methemoglobin in five species of temperate marine teleosts (1986) J. Exp. Zool., 239, pp. 139-142
Royer Jr., W. E., Knapp, J. E., Strand, K., Heaslet, H. A., Cooperative hemoglobins: Conserved fold, diverse quaternary assemblies and allosteric mechanisms (2001) Trends Biochem. Sci., 26, pp. 297-30
Ruud, J. T., Vertebrates without erythrocytes and blood pigment (1954) Nature (London), 173, pp. 848-850
Perutz, M. F., Nature of haem-haem interaction (1972) Nature (London), 237, pp. 495-499
Perez, J. E., Maclean, N., Multiple globins and haemoglobins in four species of grey mullet (Mugilidae, Teleosta) (1976) Comp. Biochem. Physiol. B, 53, pp. 465-468
Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. -S., Warren, G. L., Crystallography & NMR system: A new software suite for macromolecular structure determination (1998) Acta Crystallogr., D54, pp. 905-921
Jones, T. A., Zou, J. Y., Cowan, S. W., Kjeldgaard, M., Improved methods for binding protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr., A47, pp. 110-119
Schneider, T. R., Objective comparison of protein structures: Error-scaled difference distance matrices (2000) Acta Crystallogr., D56, pp. 714-721
Jensen, F. B., Comparative analysis of autoxidation of haemoglobin (2001) J. Exp. Biol., 204, pp. 2029-2033
Wilson Jr., R. R., Knowles, F. C., Temperature adaptation of fish hemoglobins reflected in rates of autoxidation (1987) Arch. Biochem. Biophys., 255, pp. 210-213
Perutz, M. F., Heidner, E. J., Ladner, J. E., Beetlestone, J. G., Ho, C., Slade, E. F., Influence of globin structure on the state of the heme. 3. Changes in heme spectra accompanying allosteric transitions in methemoglobin and their implications for heme-heme interaction (1974) Biochemistry, 13, pp. 2187-2200
Stam, W. T., Beintema, J. J., D'Avino, R., Tamburrini, M., Di Prisco, G., Molecular evolution of hemoglobins of Antarctic fishes (Notothenioidei) (1997) J. Mol. Evol., 45, pp. 437-445
Rifkind, J. M., Abugo, O., Levy, A., Heim, J., Detection, formation, and relevance of hemichromes and hemochromes (1994) Methods Enzymol., 231, pp. 449-480
Rachmilewitz, E. A., Peisach, J., Blumberg, W. E., Studies on the stability of oxyhemoglobin A and its constituent chains and their derivatives (1971) J. Biol. Chem., 246, pp. 3356-3366
Hargrove, M. S., Brucker, E. A., Stec, B., Sarath, G., Arredondo-Peter, R., Klucas, R. V., Olson, J. S., Phillips Jr., G. N., Crystal structure of a nonsymbiotic plant hemoglobin (2000) Struct. Fold. Des., 8, pp. 1005-1014
Robinson, V. L., Smith, B. B., Arnone, A., A pH-dependent aquomet-to-hemichrome transition in crystalline horse methemoglobin (2003) Biochemistry, 42, pp. 10113-10125
Smalas, A. O., Leiros, H. K., Os, V., Willassen, N. P., Cold adapted enzymes (2000) Biotechnol. Annu. Rev., 6, pp. 1-57
Trent III, J. T., Watts, R. A., Hargrove, M. S., Human neuroglobin, a hexacoordinate hemoglobin that reversibly binds oxygen (2001) J. Biol. Chem., 276, pp. 30106-30110
Hvitved, A. N., Trent III, J. T., Premer, S. A., Hargrove, M. S., Ligand binding and hexacoordination in synechocystis hemoglobin (2001) J. Biol. Chem., 276, pp. 34714-34721
Wittenberg, J. B., Bolognesi, M., Wittenberg, B. A., Guertin, M., Truncated hemoglobins: A new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants (2002) J. Biol. Chem., 277, pp. 871-874
Duff, S. M., Wittenberg, J. B., Hill, R. D., Expression, purification, and properties of recombinant barley (Hordeum sp.) hemoglobin. Optical spectra and reactions with gaseous ligands (1997) J. Biol. Chem., 272, pp. 16746-16752
Svistunenko, D. A., Sharpe, M. A., Nicholls, P., Blenkinsop, C., Davies, N. A., Dunne, J., Wilson, M. T., Cooper, C. E., The pH dependence of naturally occurring low-spin forms of methaemoglobin and metmyoglobin: An EPR study (2000) Biochem. J., 351, pp. 595-605
Graham, M. S., Fletcher, G. L., High concentrations of methemoglobin in five species of temperate marine teleosts (1986) J. Exp. Zool., 239, pp. 139-142
The oxidation process of Antarctic fish hemoglobins
Analysis of the molecular properties of proteins extracted from organisms living under extreme conditions often highlights peculiar features. We investigated by UV-visible spectroscopy and X-ray crystallography the oxidation process, promoted by air or ferricyanide, of five hemoglobins extracted from Antarctic fishes (Notothenioidei). Spectroscopic analysis revealed that these hemoglobins share a common oxidation pathway, which shows striking differences from the oxidation processes of hemoglobins from other vertebrates. Indeed, simple exposure of these hemoglobins to air leads to the formation of a significant amount of the low-spin hexacoordinated form, denoted hemichrome. This hemichrome form, which is detected under a variety of experimental conditions, can be reversibly transformed to either carbomonoxy or deoxygenated forms with reducing agents. Interestingly, the spectra of the fully oxidized species, obtained by treating the protein with ferricyanide, show the simultaneous presence of peaks corresponding to different hexacoordinated states, the aquomet and the hemichrome. In order to assign the heme region state of the alpha and beta chains, the air-oxidized and ferricyanide-oxidized forms of Trematomus bernacchii hemoglobin were crystallized. Crystallographic analysis revealed that these forms correspond to an alpha(aquomet)-beta(bishistidyl-hemichrome) state. This demonstrates that the alpha and beta chains of Antarctic fish hemoglobins follow very different oxidation pathways. As found for Trematomus newnesi hemoglobin in a partial hemichrome state [Riccio, A., Vitagliano, L., di Prisco, G., Zagari, A. & Mazzarella, L. (2002) Proc. Natl Acad. Sci. USA99, 9801-9806], the quaternary structures of these alpha(aquomet)-beta(bishistidyl-hemichrome) forms are intermediate between the physiological R and T hemoglobin states. Together, these structures provide information on the general features of this intermediate state.
The oxidation process of Antarctic fish hemoglobins
No results.
The oxidation process of Antarctic fish hemoglobins