Keywords: Contrast Agent, Gadolinium, Matrix Metalloproteinase, Mouse Melanoma, Tumor, Albumin, Beta Cyclodextrin Derivative, Gelatinase A, Ilomastat, Macrophage Elastase, Tetrapeptide, Tetraxetan, Amino Acid Sequence, Animal Experiment, Animal Model, Antineoplastic Activity, Article, Cancer Cell, Controlled Study, In Vitro Study, In Vivo Study, Molecular Imaging, Nonhuman, Nuclear Magnetic Resonance Imaging, Priority Journal, Protein Cleavage, Tumor Microenvironment, Chromatography, High Pressure Liquid, Reverse-Phase, Disease Models, Magnetic Resonance Spectroscopy, Mass Spectrometry, Inbred C57bl, Molecular Probes, Solid-Phase Synthesis Techniques, Gadolinium Chemistry Diagnostic Use, Matrix Metalloproteinases Metabolism, Melanoma Enzymology Pathology, Molecular Imaging Methods, Molecular Probes Metabolism,
Affiliations: *** IBB - CNR ***
Department of Environmental and Life Sciences, Università del Piemonte Orientale 'A. Avogadro', Viale T. Michel 11, 15121 Alessandria, Italy
Institute for Biostructures and Bioimages (CNR), Molecular Biotechnology Center, University of Turin, Via Nizza 52, Torino, 10125, Italy
Department of Chemisty IFM, Center for Molecular Imaging, University of Turin, Via Nizza 52, Torino, 10125, Italy
San Raffaele Scientific Institute, INSPE-Division Neuroscience, Via Olgettina 58, Milan, 20132, Italy
Massova, I., Kotra, L.P., Fridman, R., Mobashery, S., Matrix metalloproteinases: structures, evolution, and diversification (1998) FASEB J, 12, pp. 1075-1095
Sounni, N.E., Janssen, M., Foidart, J.M., Noel, A., Membrane type-1 matrix metalloproteinase and TIMP-2 in tumor angiogenesis (2003) Matrix Biol, 22, pp. 55-61
Sternlicht, M.D., Bergers, G., Matrix metalloproteinases as emerging targets in anticancer therapy: status and prospects (2000) Emerging Ther Targets, 4, pp. 609-633
Deryugina, E.I., Quigley, J.P., Matrix metalloproteinases and tumor metastasis (2006) Cancer Metastasis Rev, 25, pp. 9-34
Lampert, K., Machein, U., Machein, M.R., Conca, W., Peter, H.H., Volk, B., Expression of matrix metalloproteinases and their tissue inhibitors in human brain tumors (1998) Am J Pathol, 153, pp. 429-437
Van de Wiele, C., Oltenfreiter, R., Imaging probes targeting matrix metalloproteinases (2006) Cancer Biother Radiopharm, 21 (5), pp. 409-417
auf dem Keller, U., Bellac, C.L., Li, Y., Lou, Y., Lange, F.P., Ting, R., Harwig, C., Overall, C.M., Novel MMP inhibitor [ 18F]-Marimastat-aryltrifluoroborate as a probe for in vivo PET imaging in cancer (2010) Cancer Res, 70 (19), pp. 7562-7569
Wagner, S., Breyholz, H.-J., Höltke, C., Faust, A., Schober, O., Schäfers, M., Kopka, K., A new 18F-labelled derivative of the MMP inhibitor CGS27023A for PET: radiosynthesis and initial small-animal PET studies (2009) Applied Radiat Isotopes, 67, pp. 606-610
Lancelot, E., Amirbekian, V., Brigger, I., Raynaud, J.-S., Ballet, S., David, C., Rousseaux, O., Fayad, Z.A., Evaluation of matrix metalloproteinases in atherosclerosis using a novel noninvasive imaging approach (2008) Arterioscler Thromb Vasc Biol, 28, pp. 429-436
Turk, B.E., Huang, L.L., Piro, E.T., Cantley, L.C., Determination of protease cleavage site motifs using mixture-based oriented peptide libraries (2001) Nature Biotechnol, 19, pp. 661-667
Kridel, S.J., Chen, E., Kotra, L.P., Howard, E.W., Mobashery, S., Smith, J.W., Substrate hydrolysis by matrix metalloproteinase-9 (2001) J Biol Chem, 276 (23), pp. 20572-20578
Chen, E.I., Kridel, S.J., Howard, E.W., Li, W., Godzik, A., Smith, J.W., A unique substrate recognition profile for matrix metalloproteinase-2 (2002) J Biol Chem, 277 (6), pp. 4485-4491
Scherer, R.L., McIntyre, J.O., Matrisian, L.M., Imaging matrix metalloproteinases in cancer (2008) Cancer Metastasis Rev, 27, pp. 679-690
Lepage, M., Dow, W.C., Melchior, M., You, Y., Fingleton, B., Quarles, C.C., Pepin, C., McIntyre, J.O., Noninvasive detection of matrix metalloproteinase activity in vivo using a novel MRI contrast agent with a solubility switch (2007) Mol Imag, 6, pp. 393-403
Jastrzebska, B., Lebel, R., Therriault, H., McIntyre, J.O., Escher, E., Guerin, B., Paquette, B., Lepage, M., New enzyme-activated solubility-switchable contrast agent for magnetic resonance imaging: from synthesis to in vivo imaging (2009) J Med Chem, 52, pp. 1576-1581
Lebel, R., Jastrzebska, B., Therriault, H., Cournoyer, M.-M., McIntyre, J.O., Escher, E., Neugebauer, W., Lepage, M., Novel solubility-switchable MRI agent allows the noninvasive detection of matrix metalloproteinase-2 activity in vivo in a mouse model (2008) Magn Reson Med, 60, pp. 1056-1065
Mulder, W.J.M., Strijkers, G.J., Griffioen, A.W., van Bloois, L., Molema, G., Storm, G., Koning, G.A., Nicolay, K., A liposomal system for contrast-enhanced magnetic resonance imaging of molecular targets (2004) Bioconjug Chem, 15, pp. 799-806
Park, K., Lee, S., Kang, E., Kim, K., Choi, K., Kwon, I.C., New generation of multifunctional nanoparticles for cancer imaging and therapy (2009) Adv Funct Mater, 19, pp. 1553-1566
Janib, S.M., Moses, A.S., MacKay, J.A., Imaging and drug delivery using theranostic nanoparticles (2010) Advanced Drug Deliv Rev, 62 (11), pp. 1052-1063
Sharon Stack, M., Gray, R.D., Comparison of vertebrate collagenase and gelatinase using new fluorogenic substrate peptide (1989) J Biol Chem, 264 (8), pp. 4277-4281
Berman, J., Green, M., Sugg, E., Anderegg, R., Millington, D.S., Norwood, D.L., McGeehan, J., Wiseman, J., Rapid optimization of enzyme substrates using defined substrate mixtures (1992) J Biol Chem, 267 (3), pp. 1434-1437
Deng, S.-J., Bickett, D.M., Mitchell, J.L., Lamberti, M.H., Blackburn, R.K., Carter, H.L., Neugebauer, J., Moss, M.L., Substrate specificity of human collagenase 3 assessed using a phage-displayed peptide library (2000) J Biol Chem, 275 (40), pp. 31422-31427
Delli Castelli, D., Gianolio, E., Geninatti Crich, S., Terreno, E., Aime, S., Metal containing nanosized systems for MR-molecular imaging applications (2008) Coord Chem Rev, 252, p. 2424. , 2443
Falvey, P., Lim, C.W., Darcy, R., Revermann, T., Karst, U., Giesbers, M., Marcelis, A.T.M., Ravoo, B.J., Bilayer vesicles of amphiphilic cyclodextrins: host membranes that recognize guest molecules (2005) Chem Eur J, 11, pp. 1171-1180
Digilio, G., Menchise, V., Gianolio, E., Catanzaro, V., Carrera, C., Napolitano, R., Fedeli, F., Aime, S., Exofacial protein thiols as a route for the internalization of Gd(III)-based complexes for MRI cell labelling (2010) J Med Chem, 53, pp. 4877-4890
Carrera, C., Digilio, G., Baroni, S., Burgio, D., Consol, S., Fedeli, F., Longo, D., Aime, S., Synthesis and characterization of a Gd(III) based contrast agent responsive to thiol containing compounds (2007) Dalton Trans, (43), pp. 4980-4987
De Leòn-Rodrìguez, L.M., Ortiz, A., Weiner, A.L., Zhang, S., Kovacs, Z., Kodadek, T., Sherry, A.D., Magnetic resonance imaging detects a specific peptide-protein binding event (2002) J Am Chem Soc, 124, pp. 3514-3515
Aime, S., Botta, M., Terreno, E., Gd(III)-based contrast agents for MRI (2005) Adv Inorg Chem, 57, pp. 173-237
Caravan, P., Ellison, J.J., McMurry, T.J., Lauffer, R.B., Gadolinium(III) Chelates as MRI contrast agents: structure, dynamics, and applications (1999) Chem Rev, 99, pp. 2293-2352
Kielar, F., Tei, L., Terreno, E., Botta, M., Large relaxivity enhancement of paramagnetic lipid nanoparticles by restricting the local motions of the Gd III Chelates (2010) J Am Chem Soc, 132, pp. 7836-7837
Zhang, Z., Greenfield, M.T., Spiller, M., McMurry, T.J., Lauffer, R.B., Caravan, P., Multilocus binding increases the relaxivity of protein-bound MRI contrast agents (2005) Angew Chem Int Edn, 44, pp. 6766-6769
Aime, S., Chiaussa, M., Digilio, G., Gianolio, E., Terreno, E., 1H and 17O NMR relaxometric investigations on two gadolinium(III) DTPA-like chelates endowed with high binding affinity to human serum albumin (1999) J Biol Inorg Chem (JBIC), 4, pp. 766-774
Rasmussen, H.S., McCann, P.P., Matrix Metalloproteinase inhibition as a novel anticancer strategy: a review with special focus on batimastat and marimastat (1997) Pharmacol Ther, 75, pp. 69-75
Galardy, R.E., Cassabonne, M.E., Giese, C., Gilbert, J.H., Lapierre, F., Lopez Schaeffer, M.E., Stack, R., Holleran, W.M., Low molecular weight inhibitors in corneal ulceration (1994) Ann NY Acad Sci, 732, pp. 315-323
Watt, A.P., Mast cells and peptide induced histamine release (2002) Immunopharmacology, 9, pp. 421-434
Digilio, G., Bracco, C., Barbero, L., Chicco, D., Del Curto, M.D., Esposito, P., Traversa, S., Aime, S., NMR Conformational analysis of antide, a potent antagonist of the gonadotropin releasing hormone (2002) J Am Chem Soc, 124, pp. 3431-3442
Nicolle, G.M., Merbach, A.E., Destruction of perfluoroalkyl surfactant aggregates by β-cyclodextrin (2004) Chem Commun, (7), pp. 854-855
Meding, J., Urich, M., Licha, K., Reinhardt, M., Misselwitz, B., Fayad, Z.A., Weinmann, H.-J., Magnetic resonance imaging of atherosclerosis by targeting extracellular matrix deposition with gadofluorine M (2007) Contrast Media Mol Imag, 2, pp. 120-129
Nagase, H. H., Woessner Jr., J. F., Matrix metalloproteinases (1999) J Biol Chem, 274 (31), pp. 21491-2149
Sounni, N. E., Janssen, M., Foidart, J. M., Noel, A., Membrane type-1 matrix metalloproteinase and TIMP-2 in tumor angiogenesis (2003) Matrix Biol, 22, pp. 55-61
Sternlicht, M. D., Bergers, G., Matrix metalloproteinases as emerging targets in anticancer therapy: status and prospects (2000) Emerging Ther Targets, 4, pp. 609-633
Deryugina, E. I., Quigley, J. P., Matrix metalloproteinases and tumor metastasis (2006) Cancer Metastasis Rev, 25, pp. 9-34
Turk, B. E., Huang, L. L., Piro, E. T., Cantley, L. C., Determination of protease cleavage site motifs using mixture-based oriented peptide libraries (2001) Nature Biotechnol, 19, pp. 661-667
Kridel, S. J., Chen, E., Kotra, L. P., Howard, E. W., Mobashery, S., Smith, J. W., Substrate hydrolysis by matrix metalloproteinase-9 (2001) J Biol Chem, 276 (23), pp. 20572-20578
Chen, E. I., Kridel, S. J., Howard, E. W., Li, W., Godzik, A., Smith, J. W., A unique substrate recognition profile for matrix metalloproteinase-2 (2002) J Biol Chem, 277 (6), pp. 4485-4491
Scherer, R. L., McIntyre, J. O., Matrisian, L. M., Imaging matrix metalloproteinases in cancer (2008) Cancer Metastasis Rev, 27, pp. 679-690
Mulder, W. J. M., Strijkers, G. J., Griffioen, A. W., van Bloois, L., Molema, G., Storm, G., Koning, G. A., Nicolay, K., A liposomal system for contrast-enhanced magnetic resonance imaging of molecular targets (2004) Bioconjug Chem, 15, pp. 799-806
Janib, S. M., Moses, A. S., MacKay, J. A., Imaging and drug delivery using theranostic nanoparticles (2010) Advanced Drug Deliv Rev, 62 (11), pp. 1052-1063
Deng, S. -J., Bickett, D. M., Mitchell, J. L., Lamberti, M. H., Blackburn, R. K., Carter, H. L., Neugebauer, J., Moss, M. L., Substrate specificity of human collagenase 3 assessed using a phage-displayed peptide library (2000) J Biol Chem, 275 (40), pp. 31422-31427
De Le n-Rodr guez, L. M., Ortiz, A., Weiner, A. L., Zhang, S., Kovacs, Z., Kodadek, T., Sherry, A. D., Magnetic resonance imaging detects a specific peptide-protein binding event (2002) J Am Chem Soc, 124, pp. 3514-3515
Rasmussen, H. S., McCann, P. P., Matrix Metalloproteinase inhibition as a novel anticancer strategy: a review with special focus on batimastat and marimastat (1997) Pharmacol Ther, 75, pp. 69-75
Galardy, R. E., Cassabonne, M. E., Giese, C., Gilbert, J. H., Lapierre, F., Lopez Schaeffer, M. E., Stack, R., Holleran, W. M., Low molecular weight inhibitors in corneal ulceration (1994) Ann NY Acad Sci, 732, pp. 315-323
Watt, A. P., Mast cells and peptide induced histamine release (2002) Immunopharmacology, 9, pp. 421-434
Nicolle, G. M., Merbach, A. E., Destruction of perfluoroalkyl surfactant aggregates by -cyclodextrin (2004) Chem Commun, (7), pp. 854-855
Novel Gd(III)-based probes for MR molecular imaging of matrix metalloproteinases
Malvindi MA, Greco A, Conversano F, Figuerola A, Corti M, Bonora M, Lascialfari A, Doumari HA, Moscardini M, Cingolani R, Gigli G, Casciaro S, Pellegrino T, Ragusa A * MR Contrast Agents(292 views) Small Animal Imaging, 2011 Jul 8; 21(13): 2548-2555. Impact Factor:1.784 ViewExport to BibTeXExport to EndNote