Keywords: Antiinfective Agent, Antimicrobial Cationic Peptide, Cecropin A, Lipopolysaccharide, Magainin 2 Peptide, Xenopus, Magainin Derivative, Xenopus Protein, Animal, Article, Chemistry, Circular Dichroism, Escherichia Coli, Metabolism, Protein Folding, Protein Secondary Structure, Xenopus Laevis, Anti-Bacterial Agents, Protein Structure, Time Factors,
Affiliations: *** IBB - CNR ***
Diagnostica e Farmaceutica Molecolari Scarl, via Mezzocannone 16, 80134 Napoli, Italy
Istituto di Biostrutture e Bioimmagini, CNR, via Mezzocannone 16, 80134 Napoli, Italy
Dipartimento di Farmacia, Università di Napoli Federico II, via Mezzocannone 16, 80134 Napoli, Italy
References: Yount, N.Y., Yeaman, M.R., Emerging themes and therapeutic prospects for anti-infective peptides (2012) Annu Rev Pharmacol Toxicol, 52, pp. 337-360. , doi:10.1146/ annurev-pharmtox-010611-13453
Schuerholz, T., Brandenburg, K., Marx, G., Antimicrobial peptides and their potential application in inflammation and sepsis (2012) Crit Care, 16, p. 207. , doi:10.1186/ cc11220
Zasloff, M., Antimicrobial peptides of multicellular organisms (2002) Nature, 415 (6870), pp. 389-395. , DOI 10.1038/415389a
Yang, L., Harroun, T.A., Weiss, T.M., Ding, L., Huang, H.W., Barrel-stave model or toroidal model? A case study on melittin pores (2001) Biophysical Journal, 81 (3), pp. 1475-1485
Pouny, Y., Rapaport, D., Mor, A., Nicolas, P., Shai, Y., Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes (1992) Biochemistry, 31 (49), pp. 12416-12423. , DOI 10.1021/bi00164a017
Matsuzaki, K., Murase, O., Fujii, N., Miyajima, K., An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation (1996) Biochemistry, 35 (35), pp. 11361-11368. , DOI 10.1021/bi960016v
Ding, L., Yang, L., Weiss, T.M., Waring, A.J., Lehrer, R.I., Huang, H.W., Interaction of Antimicrobial Peptides with Lipopolysaccharides (2003) Biochemistry, 42 (42), pp. 12251-12259. , DOI 10.1021/bi035130+
Bhunia, A., Saravanan, R., Mohanram, H., Mangoni, M.L., Bhattacharjya, S., NMR structures and interactions of temporin-1Tl and temporin-1Tb with lipopolysaccharide micelles: Mechanistic insights into outer membrane permeabilization and synergistic activity (2011) J Biol Chem, 286, pp. 24394-24406. , doi:10.1074/jbc.M110.189662
Gesell, J., Zasloff, M., Opella, S.J., Two-dimensional 1H NMR experiments show that the 23-residue magainin antibiotic peptide is an α-helix in dodecylphosphocholine micelles, sodium dodecylsulfate micelles, and trifluoroethanol/water solution (1997) Journal of Biomolecular NMR, 9 (2), pp. 127-135
Holak, T.A., The solution conformation of the antibacterial peptide cecropin A: A nuclear magnetic resonance and dynamical simulated annealing study (1988) Biochemistry, 27, pp. 7620-7629
Bozzi, A., Mangoni, M.L., Rinaldi, A.C., Mignogna, G., Aschi, M., Folding propensity and biological activity of peptides: The effect of a single stereochemical isomerization on the conformational properties of bombinins in aqueous solution (2008) Biopolymers, 89, pp. 769-778. , doi:10.1002/bip.21006
Avitabile, C., Design, structural and functional characterization of a Temporin-1b analog active against Gram-negative bacteria (2013) Biochim Biophys Acta, 1830, pp. 3767-3775. , doi:10.1016/j.bbagen.2013.01.026
Ramamoorthy, A., Beyond NMR spectra of antimicrobial peptides: Dynamical images at atomic resolution and functional insights (2009) Solid State Nucl Magn Reson, 35, pp. 201-207. , doi:10.1016/j.ssnmr.2009.03.003
Henzler Wildman, K.A., Lee, D.-K., Ramamoorthy, A., Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37 (2003) Biochemistry, 42 (21), pp. 6545-6558. , DOI 10.1021/bi0273563
Porcelli, F., Buck, B., Lee, D.-K., Hallock, K.J., Ramamoorthy, A., Vegliai, G., Structure and orientation of pardaxin determined by NMR experiments in model membranes (2004) Journal of Biological Chemistry, 279 (44), pp. 45815-45823. , DOI 10.1074/jbc.M405454200
Hallock, K.J., Lee, D.-K., Ramamoorthy, A., MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain (2003) Biophysical Journal, 84 (5), pp. 3052-3060
Silhavy, T.J., Kahne, D., Walker, S., The bacterial cell envelope (2010) Cold Spring Harb Perspect Biol, 2, pp. a000414. , doi:10.1101/cshperspect.a000414
Duong, F., Eichler, J., Price, A., Leonard, M.R., Wickner, W., Biogenesis of the gram-negative bacterial envelope (1997) Cell, 91 (5), pp. 567-573
Santos, N.C., Silva, A.C., Castanho, M.A.R.B., Martins-Silva, J., Saldanha, C., Evaluation of Lipopolysaccharide aggregation by light scattering spectroscopy (2003) ChemBioChem, 4 (1), pp. 96-100. , DOI 10.1002/cbic.200390020
Hancock, R.E.W., Chapple, D.S., Peptide antibiotics (1999) Antimicrobial Agents and Chemotherapy, 43 (6), pp. 1317-1323
Brogden, K.A., Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? (2005) Nature Reviews Microbiology, 3 (3), pp. 238-250. , DOI 10.1038/nrmicro1098
Gee, M.L., Imaging the action of antimicrobial peptides on living bacterial cells (2013) Sci Rep, 3, p. 1557. , doi:10.1038/srep01557
Silvestro, L., Axelsen, P.H., Membrane-induced folding of cecropin A (2000) Biophys J, 79, pp. 1465-1477. , doi:10.1016/S0006-3495(00)76398-3
Silvestro, L., Weiser, J.N., Axelsen, P.H., Antibacterial and antimembrane activities of cecropin A in Escherichia coli (2000) Antimicrobial Agents and Chemotherapy, 44 (3), pp. 602-607. , DOI 10.1128/AAC.44.3.602-607.2000
Bechinger, B., Zasloff, M., Opella, S.J., Structure and orientation of the antibiotic peptide magainin in membranes by solid-state nuclear magnetic resonance spectroscopy (1993) Protein Science, 2 (12), pp. 2077-2084
Bland, J.M., De Lucca, A.J., Jacks, T.J., Vigo, C.B., All-D-cecropin B: Synthesis, conformation, lipopolysaccharide binding, and antibacterial activity (2001) Molecular and Cellular Biochemistry, 218 (1-2), pp. 105-111. , DOI 10.1023/A:1007293816634
Tietze, L.F., Krewer, B., Major, F., Schuberth, I., CD-spectroscopy as a powerful tool for investigating the mode of action of unmodified drugs in live cells (2009) J Am Chem Soc, 131, pp. 13031-13036. , doi:10.1021/ja902767f
Steiner, H., Hultmark, D., Engstrom, A., Sequence and specificity of two antibacterial proteins involved in insect immunity (1981) Nature, 292 (5820), pp. 246-248. , DOI 10.1038/292246a0
Zasloff, M., Magainins, a class of antimicrobial peptides from Xenopus skin: Isolation, characterization of two active forms, and partial cDNA sequence of a precursor (1987) Proceedings of the National Academy of Sciences of the United States of America, 84 (15), pp. 5449-5453
Imura, Y., Choda, N., Matsuzaki, K., Magainin 2 in action: Distinct modes of membrane permeabilization in living bacterial andmammalian cells (2008) Biophys J, 95, pp. 5757-5765. , doi:10.1529/biophysj.108.133488
Kim, C., Spano, J., Park, E.K., Wi, S., Evidence of pores and thinned lipid bilayers induced in oriented lipid membranes interacting with the antimicrobial peptides, magainin-2 and aurein-3.3 (2009) Biochim Biophys Acta, 1788, pp. 1482-1496. , doi:10.1016/ j.bbamem.2009.04.017
Matsuzaki, K., Sugishita, K.-I., Harada, M., Fujii, N., Miyajima, K., Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria (1997) Biochimica et Biophysica Acta - Biomembranes, 1327 (1), pp. 119-130. , DOI 10.1016/S0005-2736(97)00051-5, PII S0005273697000515
Christensen, B., Fink, J., Merrifield, R.B., Mauzerall, D., Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes (1988) Proc Natl Acad Sci U S A, 85, pp. 5072-5076
Hong, R.W., Shchepetov, M., Weiser, J.N., Axelsen, P.H., Transcriptional profile of the Escherichia coli response to the antimicrobial insect peptide cecropin A (2003) Antimicrobial Agents and Chemotherapy, 47 (1), pp. 1-6. , DOI 10.1128/AAC.47.1.1-6.2003
Yount, N. Y., Yeaman, M. R., Emerging themes and therapeutic prospects for anti-infective peptides (2012) Annu Rev Pharmacol Toxicol, 52, pp. 337-360. , doi: 10. 1146/ annurev-pharmtox-010611-13453
Holak, T. A., The solution conformation of the antibacterial peptide cecropin A: A nuclear magnetic resonance and dynamical simulated annealing study (1988) Biochemistry, 27, pp. 7620-7629
Hallock, K. J., Lee, D. -K., Ramamoorthy, A., MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain (2003) Biophysical Journal, 84 (5), pp. 3052-3060
Silhavy, T. J., Kahne, D., Walker, S., The bacterial cell envelope (2010) Cold Spring Harb Perspect Biol, 2, pp. a000414. , doi: 10. 1101/cshperspect. a000414
Santos, N. C., Silva, A. C., Castanho, M. A. R. B., Martins-Silva, J., Saldanha, C., Evaluation of Lipopolysaccharide aggregation by light scattering spectroscopy (2003) ChemBioChem, 4 (1), pp. 96-100. , DOI 10. 1002/cbic. 200390020
Hancock, R. E. W., Chapple, D. S., Peptide antibiotics (1999) Antimicrobial Agents and Chemotherapy, 43 (6), pp. 1317-1323
Brogden, K. A., Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? (2005) Nature Reviews Microbiology, 3 (3), pp. 238-250. , DOI 10. 1038/nrmicro1098
Gee, M. L., Imaging the action of antimicrobial peptides on living bacterial cells (2013) Sci Rep, 3, p. 1557. , doi: 10. 1038/srep01557
Bland, J. M., De Lucca, A. J., Jacks, T. J., Vigo, C. B., All-D-cecropin B: Synthesis, conformation, lipopolysaccharide binding, and antibacterial activity (2001) Molecular and Cellular Biochemistry, 218 (1-2), pp. 105-111. , DOI 10. 1023/A: 1007293816634
Tietze, L. F., Krewer, B., Major, F., Schuberth, I., CD-spectroscopy as a powerful tool for investigating the mode of action of unmodified drugs in live cells (2009) J Am Chem Soc, 131, pp. 13031-13036. , doi: 10. 1021/ja902767f
Hong, R. W., Shchepetov, M., Weiser, J. N., Axelsen, P. H., Transcriptional profile of the Escherichia coli response to the antimicrobial insect peptide cecropin A (2003) Antimicrobial Agents and Chemotherapy, 47 (1), pp. 1-6. , DOI 10. 1128/AAC. 47. 1. 1-6. 2003
Circular Dichroism studies on the interactions of antimicrobial peptides with bacterial cells
Studying how antimicrobial peptides interact with bacterial cells is pivotal to understand their mechanism of action. In this paper we explored the use of Circular Dichroism to detect the secondary structure of two antimicrobial peptides, magainin 2 and cecropin A, with E. coli bacterial cells. The results of our studies allow us to gain two important information in the context of antimicrobial peptides- bacterial cells interactions: peptides fold mainly due to interaction with LPS, which is the main component of the Gram negative bacteria outer membrane and the time required for the folding on the bacterial cells depends on the peptide analyzed.
Circular Dichroism studies on the interactions of antimicrobial peptides with bacterial cells