α-Helical structures drive early stages of self-assembly of amyloidogenic amyloid polypeptide aggregate formation in membranes(740 views) Pannuzzo M, Raudino A, Milardi D, La Rosa C, Karttunen M
Keywords: Amylin, Recombinant Protein, Algorithm, Article, Atomic Force Microscopy, Chemical Structure, Chemistry, Human, Lipid Bilayer, Membrane, Metabolism, Protein Binding, Protein Multimerization, Protein Secondary Structure, Thermodynamics, Islet Amyloid Polypeptide, Models, Molecular, Protein Structure,
Affiliations: *** IBB - CNR ***
Department of Computational Biology, University of Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany
Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, Catania, Italy I-95125, Italy
Istituto di Biostrutture e Bioimmagini, CNR, Unita Organizzativa e di Supporto di Catania, Viale A. Doria 6, Catania, Italy I-95125, Italy
References: Merlini, G., Bellotti, V., Molecular mechanisms of amyloidosis (2003) New England Journal of Medicine, 349 (6), pp. 583-596. , DOI 10.1056/NEJMra02314
Hardy, J., Selkoe, D.J., The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics (2002) Science, 297 (5580), pp. 353-356. , DOI 10.1126/science.1072994
Dickson, D.W., The pathogenesis of senile plaques (1997) Journal of Neuropathology and Experimental Neurology, 56 (4), pp. 321-339
Abedini, A., Raleigh, D.P., A role for helical intermediates in amyloid formation by natively unfolded polypeptides? (2009) Phys. Biol, 6, p. 015005
Miller, Y., Ma, B., Nussinov, R., Polymorphism in Alzheimer Abeta amyloid organization reflects conformational selection in a rugged energy landscape (2010) Chem. Rev, 110, pp. 4820-4838
Dupuis, N.F., Wu, C., Shea, J., Bowers, M.T., Human islet amyloid polypeptide monomers form ordered beta-hairpins: A possible direct amyloidogenic precursor (2009) J. Am. Chem. Soc, 131, pp. 18283-18292
Bernstein, S.L., Amyloid-b protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer's disease (2009) Nature Chem, 1, pp. 326-331
Hoppener, J.W.M., Ahren, B., Lips, C.J.M., Islet amyloid and type 2 diabetes mellitus (2000) New England Journal of Medicine, 343 (6), pp. 411-419. , DOI 10.1056/NEJM200008103430607
Kahn, S.E., Andrikopoulos, S., Verchere, C.B., Islet amyloid: A long-recognized but underappreciated pathological feature of type 2 diabetes (1999) Diabetes, 48 (2), pp. 241-253. , DOI 10.2337/diabetes.48.2.241
Haataja, L., Gurlo, T., Huang, C.J., Butler, P.C., Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis (2008) Endocrine Reviews, 29 (3), pp. 303-316. , http://edrv.endojournals.org/cgi/reprint/29/3/303, DOI 10.1210/er.2007-0037
Ramamoorthy, A., Lim, M.H., Structural characterization and inhibition of toxic amyloid-b oligomeric intermediates (2013) Biophys. J, 105, pp. 287-288
Milojevic, V., Stoichiometry, M.V., And affinity of the human serum albumin-alzheimer's ab peptide interactions (2011) Biophys. J, 100, pp. 183-192
Raditsis, V., Milojevic, V., Melacini, V., Ab association inhibition by transferrin (2013) Biophys. J, 105, pp. 473-480
Glabe, C.G., Common mechanisms of amyloid oligomer pathogenesis in degenerative disease (2006) Neurobiology of Aging, 27 (4), pp. 570-575. , DOI 10.1016/j.neurobiolaging.2005.04.017, PII S0197458005002344, Protein Misfolding in Alzheimer's and Other Age-Related Neurodegenerative Diseases
Kayed, R., Head, E., Thompson, J.L., McIntire, T.M., Milton, S.C., Cotman, C.W., Glabel, C.G., Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis (2003) Science, 300 (5618), pp. 486-489. , DOI 10.1126/science.1079469
Demmester, N., Apoptosis induced in neuronalcells by C-terminal amyloid fragments is correlated with theiraggregation properties in phospholipid membranes (2000) Mol. Membr. Biol, 17, pp. 219-228
Kawahara, M., Kuroda, Y., Arispe, N., Rojas, E., Alzheimer's β-amyloid, human islet amylin, and priori protein fragment evoke intracellular free calcium elevations by a common mechanism in a hypothalamic GnRH neuronal cell line (2000) Journal of Biological Chemistry, 275 (19), pp. 14077-14083. , DOI 10.1074/jbc.275.19.14077
Lin, H., Bhatia, R., Lal, R., Amyloid β protein forms ion channels: Implications for Alzheimer's disease pathophysiology (2001) FASEB Journal, 15 (13), pp. 2433-2444. , DOI 10.1096/fj.01-0377com
Hebda, J.A., Miranker, A.D., The interplay of Catalysis and Toxicity by Amyloid intermediates on Lipid Bilayers: Insights from Type II Diabetes (2009) Ann. Rev. Biophys, 38, pp. 125-152
Sciacca, M.F., Two-Step Mechanism of Membrane Disruption by Ab through Membrane Fragmentation and Pore formation (2012) Biophys. J, 103, pp. 702-710
Butterfield, S.M., Lashuel, H., Amyloidogenic protein-membrane interactions: Mechanistic insight from model systems (2010) Angew. Chem, 49, pp. 5628-5654
Brender, J.R., Lee, E.L., Cavitt, M.A., Gafni, A., Steel, D.G., Ramamoorthy, A., Amyloid fiber formation and membrane disruption are separate processes localized in two distinct regions of IAPP, the type-2-diabetes-related peptide (2008) Journal of the American Chemical Society, 130 (20), pp. 6424-6429. , DOI 10.1021/ja710484d
Sciacca, M.F.M., Cations as Switches of Amyloid-Mediated Membrane Disruption Mechanisms: Calcium and IAPP (2013) Biophys. J, 104, pp. 172-184
Brender, J.R., Salamekh, S., Ramamoorthy, A., Membrane disruption and early events in the aggregation of the diabetes related peptide IAPP from amolecular perspective (2012) Acc. Chem Res, 45, pp. 454-462
Cooper, G.J.S., Willis, A.C., Clark, A., Turner, R.C., Sim, R.B., Reid, K.B.M., Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients (1987) Proceedings of the National Academy of Sciences of the United States of America, 84 (23), pp. 8628-8632
Westermark, P., Andersson, A., Westermark, G.T., Islet amyloid polypeptide, islet amyloid, and diabetes mellitus (2011) Physiol. Rev, 91, pp. 795-826
Harroun, T.A., Bradshaw, J.P., Ashley, R.H., Inhibitors can arrest the membrane activity of human islet amyloid polypeptide independently of amyloid formation (2001) FEBS Letters, 507 (2), pp. 200-204. , DOI 10.1016/S0014-5793(01)02972-6, PII S0014579301029726
Hirakura, Y., Yiu, W.W., Yamamoto, A., Kagan, B.L., Amyloid peptide channels: Blockade by zinc and inhibition by Congo red (amyloid channel block) (2000) Amyloid, 7, pp. 194-199
Mirzabekov, T.A., Lin, M.-C., Kagan, B.L., Pore formation by the cytotoxic islet amyloid peptide amylin (1996) Journal of Biological Chemistry, 271 (4), pp. 1988-1992. , DOI 10.1074/jbc.271.4.1988
Anguiano, M., Nowak, R.J., Lansbury, P.T., Protofibrillar islet amyloid polypeptide permeabilizes synthetic vesicles by a pore-like mechanism that may be relevant to type II diabetes (2002) Biochemistry, 41, pp. 11338-11343
Weise, K., Radovan, D., Gohlke, A., Opitz, N., Winter, R., Interaction of hIAPP with model raft membranes and pancreatic beta-cells: Cytotoxicity of hIAPP oligomers (2010) Chem Bio Chem, 11, pp. 1280-1290
Meier, J.J., Kayed, R., Lin, C.-Y., Gurlo, T., Haataja, L., Jayasinghe, S., Langen, R., Butler, P.C., Inhibition of human IAPP fibril formation does not prevent β-cell death: Evidence for distinct actions of oligomers and fibrils of human IAPP (2006) American Journal of Physiology - Endocrinology and Metabolism, 291 (6), pp. E1317-E1324. , http://ajpendo.physiology.org/cgi/reprint/291/6/E1317, DOI 10.1152/ajpendo.00082.2006
Nath, A., Miranker, A.D., Rhoades, E., Amembrane-bound antiparallel dimer of rat islet amyloid polypeptide (2011) Angew. Chem, 50, pp. 10859-10862
Quist, A., Doudevski, I., Lin, H., Azimova, R., Ng, D., Frangione, B., Kagan, B., Lal, R., Amyloid ion channels: A common structural link for protein-misfolding disease (2005) Proceedings of the National Academy of Sciences of the United States of America, 102 (30), pp. 10427-10432. , DOI 10.1073/pnas.0502066102
Engel, M.F.M., Yigittop, H., Elgersma, R.C., Rijkers, D.T.S., Liskamp, R.M.J., De Kruijff, B., Hoppener, J.W.M., Antoinette Killian, J., Islet amyloid polypeptide inserts into phospholipid monolayers as monomer (2006) Journal of Molecular Biology, 356 (3), pp. 783-789. , DOI 10.1016/j.jmb.2005.12.020, PII S0022283605015809
Prakash, R., Nanga, R.P.R., Brender, J.R., Vivekanandan, S., Ramamoorthy, A., Structure and membrane orientation of IAPP in its natively amidated form at physiological pH in a membrane environment (1808) Biochim. Biophys. Acta, pp. 2337-2342
Laghaei, R., Mousseau, N., Wei, G., Effect of the disulfide bond on the monomeric structure of human amylin studied by combined Hamiltonian and temperature replica exchange molecular dynamics simulations (2010) J. Phys. Chem B, 114, pp. 7071-7077
Reddy, A.S., Stable and metastable states of human amylin in solution (2010) Biophys. J, 99, pp. 2208-2216
Andrews, M.N., Winter, R., Comparing the structural properties of human and rat islet amyloid polypeptide by MD computer simulations (2011) Biophys. Chem, 156, pp. 43-50
Rivera, E., Straub, J., Thirumalai, D., Sequence and crowding effects in the aggregation of a 10-residue fragment derived from islet amyloid polypeptide (2009) Biophys. J, 96, pp. 4552-4560
Xu, W., Wei, G., Su, H., Nordenskiod, L., Mu, Y., Effects of cholesterol on pore formation in lipid bilayers induced by human islet amyloid polypeptide fragments: A coarse-grained molecular dynamics study (2011) Phys. Rev. e, 84 (1-8)
Lee, C., Sun, Y., Huang, H.W., How type II Diabetes-related islet amyloid polypeptide damages lipid bilayers (2012) Biophys. J, 102, pp. 1059-1068
Scalisi, S., Self-assembling pathway of hiapp fibrils within lipid bilayers (2010) Chem Biochem, 11, pp. 1856-1859
Jayasinghe, S.A., Langen, R., Membrane interaction of islet amyloid polypeptide (2007) Biochimica et Biophysica Acta - Biomembranes, 1768 (8), pp. 2002-2009. , DOI 10.1016/j.bbamem.2007.01.022, PII S0005273607000351
Soong, R., Brender, J.R., MacDonald, P.M., Ramamoorthy, A., Association of highly compact type II diabetes related islet amyloid polypeptide intermediate species at physiological temperature revealed by diffusion nmr spectroscopy (2009) J. Am. Chem. Soc, 131, pp. 7079-7085
Oelschlaeger, C., Schopferer, M., Scheffold, F., Willenbacher, N., Linear-to-branched micelles transition: A rheometry and Diffusing Wave Spectroscopy (DWS) study (2009) Langmuir, 25, pp. 716-723
Tang, M., Carter, W.C., Branching mechanisms in surfactants micellar growth (2013) J. Phys. Chem. B, 117, pp. 2898-2905
Pannuzzo, M., Milardi, D., Raudino, A., Karttunen, M., La Rosa, C., Analytical model and multiscale simulations of Ab peptide aggregation in lipid membranes: Towards a unifying description of conformational transitions, oligomerization and membrane damage (2013) Phys.Chem. Chem. Phys, 15, pp. 8940-8951
Zimmerberg, J., Kozlov, M.M., How proteins produce cellular membrane curvature (2006) Nature Reviews Molecular Cell Biology, 7 (1), pp. 9-19. , DOI 10.1038/nrm1784, PII N1784
Bahrami, A.H., Jalali, M.A., Vesicle deformations by clusters of transmembrane proteins (2011) J. Chem. Phys, 134, p. 085106
Dommersnes, P.G., Fournier, J.-B., N-body study of anisotropic membrane inclusions: Membrane mediated interactions and ordered aggregation (1999) European Physical Journal B, 12 (1), pp. 9-12
Iglic, A., Babnik, B., Bohinc, K., Fosnaric, M., Hagerstrand, H., Kralj-Iglic, V., On the role of anisotropy of membrane constituents in formation of a membrane neck during budding of a multicomponent membrane (2007) Journal of Biomechanics, 40 (3), pp. 579-585. , DOI 10.1016/j.jbiomech.2006.02.006, PII S0021929006000650
Ramamoorthy, A., Thennarasu, S., Lee, D.-K., Tan, A., Maloy, L., Solid-state NMR investigation of the membrane-disrupting mechanism of antimicrobial peptides MSI-78 and MSI-594 derived from magainin 2 and melittin (2006) Biophysical Journal, 91 (1), pp. 206-216. , http://www.biophysj.org/cgi/reprint/91/1/206, DOI 10.1529/biophysj.105.073890
Sciacca, M.F.M., Pappalardo, M., Milardi, D., Grasso, D.M., La Rosa, C., Calcium-activated membrane interaction of the islet amyloid polypeptide: Implications in the pathogenesis of type II diabetes mellitus (2008) Arch. Biochem. Biophys, 477, pp. 291-298
Sciacca, M.F.M., Are fibril growth and membrane damage linked processes? An experimental and computational study of IAPP(12-18) and IAPP(21-27) peptides (2010) New J. Chem, 34, pp. 200-207
Seifert, U., Lipowsky, R., The morphology of vesicles (1995) Structure and Dynamics of Membranes, pp. 403-463. , Lipowsky, R. & Sackmann, E. editors Elsevier, Amsterdam
Straub, J.E., Thirumalai, D., Toward amolecular theory of early and late events in monomer to amyloid fibril formation (2011) Ann. Rev. Phys. Chem, 62, pp. 437-463
Pappalardom, A molecular dynamics study on the conformational stability of prp 180-193 helix ii prion fragment (2004) Chem. Phys. Lett, 390, pp. 511-516
Milardi, D., Pappalardo, M., Pannuzzo, M., La Rosa, C., Grasso, D.M., The role of the Cys2-Cys7 disulfide bridge on the early steps of Islet Amyloid Polypeptide aggregation (2008) Chem. Phys. Lett, 463, pp. 396-399
Last, N.B., Rhoades, E., Miranker, A.D., Islet amyloid polypeptide demonstrates a persistent capacity to disrupt membrane integrity (2011) Proc. Natl. Acad. Sci. USA, 108, pp. 9460-9465
Gregory, S.M., Cavenaugh, A., Journigan, V., Pokorny, A., Almeida, P.F.F., A quantitative model for the all-or-none permeabilization of phospholipid vesicles by the antimicrobial peptide cecropin A (2008) Biophys. J, 94, pp. 1667-1680
Axelsen, P.H., A chaotic pore model of polypeptide antibiotic action (2008) Biophys. J, 94, pp. 1549-1550
Bond, P.J., Sansom, M.S.P., Insertion and assembly of membrane proteins via simulation (2006) Journal of the American Chemical Society, 128 (8), pp. 2697-2704. , DOI 10.1021/ja0569104
Zhao, J., Yu, X., Liang, G., Zheng, J., Heterogeneous triangular structures of human islet amyloid polypeptide (amylin) with internal hydrophobic cavity and external wrapping morphology reveal the polymorphic nature of amyloid fibrils (2011) Biomacromolecules, 12, pp. 1781-1794
Mo, Y., Lu, Y., Wei, G., Derreumaux, P., Structural diversity of the soluble trimers of the human amylin(20-29) peptide revealed by molecular dynamics simulations (2009) J. Chem. Phys, 130, p. 125101
Dias, C.L., Karttunen, M., Chan, H.S., Hydrophobic interactions in the formation of secondary structures in small peptides (2011) Phys. Rev. e, 84, p. 041931
Magzoub, J., Miranker, A.D., Concentration-dependent transitions govern the subcellular localization of islet amyloid polypeptide (2012) FASEB J, 26, p. 1228
Yu, S.P., Farhangrazi, Z.S., Ying, H.S., Yeh, C.-H., Choi, D.W., Enhancement of outward potassium current may participate in β-amyloid peptide-induced cortical neuronal death (1998) Neurobiology of Disease, 5 (2), pp. 81-88. , DOI 10.1006/nbdi.1998.0186
Rzepiela, Reconstruction of atomistic details from coarse grained structures (2010) J. Comp. Chem, 31, pp. 1333-1343
Patil, S.M., Xu, S., Sheftic, S.R., Alexandrescu, A.T., Dynamic alpha-helix structure of micelle-bound human amylin (2009) J. Biol. Chem, 284, pp. 11982-11991
Nanga, R.P.R., Three-dimensional structure and orientation of rat islet amyloid polypeptide protein in a membrane environment by solution NMR spectroscopy (2009) J. Am. Chem. Soc, 131, pp. 8252-8261
Hess, B., Kutzner, C., Van Der Spoel, D., Lindahl, E., GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation (2008) J. Chem. Theory. Comput, 4, pp. 435-447
Wong-Ekkabut, J., Miettinen, M.S., Dias, C., Karttunen, M., Static charges cannot drive a continuous flow of water molecules through a carbon nanotube (2010) Nature Nanotech, 5, pp. 555-557
Oostenbrink, C., Soares, T.A., Van Der Vegt, N.F.A., Van Gunsteren, W.F., Validation of the 53A6 GROMOS force field (2005) European Biophysics Journal, 34 (4), pp. 273-284. , DOI 10.1007/s00249-004-0448-6
Wong-Ekkabut, J., Karttunen, M., Assessment of common simulation protocols for simulations of nanopores, membrane proteins & channels (2012) J. Chem. Theory Comput, 8, pp. 2905-2911
Cino, E.A., Choy, W.-Y., Karttunen, M., Comparison of secondary structure formation using 10 different force fields in microsecond molecular dynamics simulations (2012) J. Chem. Theory Comput, 8, pp. 2725-2740
Monticelli, L., The MARTINI coarse grained force field: Extension to proteins (2008) J. Chem. Theory Comp, 4, pp. 819-834
Marrink, S.J., Risselada, H.J., Yefimov, S., Tieleman, D.P., De Vries, A.H., The MARTINI force field: Coarse grained model for biomolecular simulations (2007) Journal of Physical Chemistry B, 111 (27), pp. 7812-7824. , DOI 10.1021/jp071097f
Marrink, S.J., De Vries, A.H., Mark, A.E., Coarse grained model for semiquantitative lipid simulations (2004) J. Phys. Chem. B, 108, pp. 750-760
De Jong, D.H., Singh, G., Bennett, W.F.D., Arnarez, C., Wassenaar, T.A., Schaer, L.V., Periole, X., Marrink, S.J., Improved parameters for the Martini coarse-grained protein force field (2013) J. Chem. Theory Comput, 9, pp. 687-697. , http://md.chem.rug.nl/cgmartini/index.php/force-fieldparameters/lipids, Parameters at
Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., Hermans, J., (1981) Interaction Models for Water in Relation to Protein Hydration, in Intermolecular Forces, pp. 331-342. , edited by Pullman, B D. Reidel Publishing Company, Dordrecht
Nose, S.A., Unified formulation of the constant temperature molecular dynamics methods (1984) J. Chem. Phys, 81, p. 511
Hoover, W., Canonical dynamics: Equilibrium phase-space distributions (1985) Phys. Rev. A, 31, pp. 1695-1697
Parrinello, M., Rahman, A., Polymorphic transitions in single crystals: A new molecular dynamics method (1981) Journal of Applied Physics, 52 (12), pp. 7182-7190. , DOI 10.1063/1.328693
Darden, T., York, D., Pedersen, L., Particle mesh Ewald: An Nlog(N)method for Ewald sums in large systems (1993) J. Chem. Phys, 98, p. 10089
Dickson, D. W., The pathogenesis of senile plaques (1997) Journal of Neuropathology and Experimental Neurology, 56 (4), pp. 321-339
Dupuis, N. F., Wu, C., Shea, J., Bowers, M. T., Human islet amyloid polypeptide monomers form ordered beta-hairpins: A possible direct amyloidogenic precursor (2009) J. Am. Chem. Soc, 131, pp. 18283-18292
Bernstein, S. L., Amyloid-b protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer's disease (2009) Nature Chem, 1, pp. 326-331
Hoppener, J. W. M., Ahren, B., Lips, C. J. M., Islet amyloid and type 2 diabetes mellitus (2000) New England Journal of Medicine, 343 (6), pp. 411-419. , DOI 10. 1056/NEJM200008103430607
Kahn, S. E., Andrikopoulos, S., Verchere, C. B., Islet amyloid: A long-recognized but underappreciated pathological feature of type 2 diabetes (1999) Diabetes, 48 (2), pp. 241-253. , DOI 10. 2337/diabetes. 48. 2. 241
Glabe, C. G., Common mechanisms of amyloid oligomer pathogenesis in degenerative disease (2006) Neurobiology of Aging, 27 (4), pp. 570-575. , DOI 10. 1016/j. neurobiolaging. 2005. 04. 017, PII S0197458005002344, Protein Misfolding in Alzheimer's and Other Age-Related Neurodegenerative Diseases
Hebda, J. A., Miranker, A. D., The interplay of Catalysis and Toxicity by Amyloid intermediates on Lipid Bilayers: Insights from Type II Diabetes (2009) Ann. Rev. Biophys, 38, pp. 125-152
Sciacca, M. F., Two-Step Mechanism of Membrane Disruption by Ab through Membrane Fragmentation and Pore formation (2012) Biophys. J, 103, pp. 702-710
Butterfield, S. M., Lashuel, H., Amyloidogenic protein-membrane interactions: Mechanistic insight from model systems (2010) Angew. Chem, 49, pp. 5628-5654
Brender, J. R., Lee, E. L., Cavitt, M. A., Gafni, A., Steel, D. G., Ramamoorthy, A., Amyloid fiber formation and membrane disruption are separate processes localized in two distinct regions of IAPP, the type-2-diabetes-related peptide (2008) Journal of the American Chemical Society, 130 (20), pp. 6424-6429. , DOI 10. 1021/ja710484d
Sciacca, M. F. M., Cations as Switches of Amyloid-Mediated Membrane Disruption Mechanisms: Calcium and IAPP (2013) Biophys. J, 104, pp. 172-184
Brender, J. R., Salamekh, S., Ramamoorthy, A., Membrane disruption and early events in the aggregation of the diabetes related peptide IAPP from amolecular perspective (2012) Acc. Chem Res, 45, pp. 454-462
Cooper, G. J. S., Willis, A. C., Clark, A., Turner, R. C., Sim, R. B., Reid, K. B. M., Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients (1987) Proceedings of the National Academy of Sciences of the United States of America, 84 (23), pp. 8628-8632
Harroun, T. A., Bradshaw, J. P., Ashley, R. H., Inhibitors can arrest the membrane activity of human islet amyloid polypeptide independently of amyloid formation (2001) FEBS Letters, 507 (2), pp. 200-204. , DOI 10. 1016/S0014-5793 (01) 02972-6, PII S0014579301029726
Mirzabekov, T. A., Lin, M. -C., Kagan, B. L., Pore formation by the cytotoxic islet amyloid peptide amylin (1996) Journal of Biological Chemistry, 271 (4), pp. 1988-1992. , DOI 10. 1074/jbc. 271. 4. 1988
Meier, J. J., Kayed, R., Lin, C. -Y., Gurlo, T., Haataja, L., Jayasinghe, S., Langen, R., Butler, P. C., Inhibition of human IAPP fibril formation does not prevent -cell death: Evidence for distinct actions of oligomers and fibrils of human IAPP (2006) American Journal of Physiology - Endocrinology and Metabolism, 291 (6), pp. E1317-E1324. , http: //ajpendo. physiology. org/cgi/reprint/291/6/E1317, DOI 10. 1152/ajpendo. 00082. 2006
Engel, M. F. M., Yigittop, H., Elgersma, R. C., Rijkers, D. T. S., Liskamp, R. M. J., De Kruijff, B., Hoppener, J. W. M., Antoinette Killian, J., Islet amyloid polypeptide inserts into phospholipid monolayers as monomer (2006) Journal of Molecular Biology, 356 (3), pp. 783-789. , DOI 10. 1016/j. jmb. 2005. 12. 020, PII S0022283605015809
Reddy, A. S., Stable and metastable states of human amylin in solution (2010) Biophys. J, 99, pp. 2208-2216
Andrews, M. N., Winter, R., Comparing the structural properties of human and rat islet amyloid polypeptide by MD computer simulations (2011) Biophys. Chem, 156, pp. 43-50
Jayasinghe, S. A., Langen, R., Membrane interaction of islet amyloid polypeptide (2007) Biochimica et Biophysica Acta - Biomembranes, 1768 (8), pp. 2002-2009. , DOI 10. 1016/j. bbamem. 2007. 01. 022, PII S0005273607000351
Bahrami, A. H., Jalali, M. A., Vesicle deformations by clusters of transmembrane proteins (2011) J. Chem. Phys, 134, p. 085106
Dommersnes, P. G., Fournier, J. -B., N-body study of anisotropic membrane inclusions: Membrane mediated interactions and ordered aggregation (1999) European Physical Journal B, 12 (1), pp. 9-12
Straub, J. E., Thirumalai, D., Toward amolecular theory of early and late events in monomer to amyloid fibril formation (2011) Ann. Rev. Phys. Chem, 62, pp. 437-463
Last, N. B., Rhoades, E., Miranker, A. D., Islet amyloid polypeptide demonstrates a persistent capacity to disrupt membrane integrity (2011) Proc. Natl. Acad. Sci. USA, 108, pp. 9460-9465
Gregory, S. M., Cavenaugh, A., Journigan, V., Pokorny, A., Almeida, P. F. F., A quantitative model for the all-or-none permeabilization of phospholipid vesicles by the antimicrobial peptide cecropin A (2008) Biophys. J, 94, pp. 1667-1680
Axelsen, P. H., A chaotic pore model of polypeptide antibiotic action (2008) Biophys. J, 94, pp. 1549-1550
Bond, P. J., Sansom, M. S. P., Insertion and assembly of membrane proteins via simulation (2006) Journal of the American Chemical Society, 128 (8), pp. 2697-2704. , DOI 10. 1021/ja0569104
Dias, C. L., Karttunen, M., Chan, H. S., Hydrophobic interactions in the formation of secondary structures in small peptides (2011) Phys. Rev. e, 84, p. 041931
Yu, S. P., Farhangrazi, Z. S., Ying, H. S., Yeh, C. -H., Choi, D. W., Enhancement of outward potassium current may participate in -amyloid peptide-induced cortical neuronal death (1998) Neurobiology of Disease, 5 (2), pp. 81-88. , DOI 10. 1006/nbdi. 1998. 0186
Patil, S. M., Xu, S., Sheftic, S. R., Alexandrescu, A. T., Dynamic alpha-helix structure of micelle-bound human amylin (2009) J. Biol. Chem, 284, pp. 11982-11991
Nanga, R. P. R., Three-dimensional structure and orientation of rat islet amyloid polypeptide protein in a membrane environment by solution NMR spectroscopy (2009) J. Am. Chem. Soc, 131, pp. 8252-8261
Cino, E. A., Choy, W. -Y., Karttunen, M., Comparison of secondary structure formation using 10 different force fields in microsecond molecular dynamics simulations (2012) J. Chem. Theory Comput, 8, pp. 2725-2740
Marrink, S. J., Risselada, H. J., Yefimov, S., Tieleman, D. P., De Vries, A. H., The MARTINI force field: Coarse grained model for biomolecular simulations (2007) Journal of Physical Chemistry B, 111 (27), pp. 7812-7824. , DOI 10. 1021/jp071097f
Marrink, S. J., De Vries, A. H., Mark, A. E., Coarse grained model for semiquantitative lipid simulations (2004) J. Phys. Chem. B, 108, pp. 750-760
De Jong, D. H., Singh, G., Bennett, W. F. D., Arnarez, C., Wassenaar, T. A., Schaer, L. V., Periole, X., Marrink, S. J., Improved parameters for the Martini coarse-grained protein force field (2013) J. Chem. Theory Comput, 9, pp. 687-697. , http: //md. chem. rug. nl/cgmartini/index. php/force-fieldparameters/lipids, Parameters at
Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., Hermans, J., (1981) Interaction Models for Water in Relation to Protein Hydration, in Intermolecular Forces, pp. 331-342. , edited by Pullman, B D. Reidel Publishing Company, Dordrecht
Nose, S. A., Unified formulation of the constant temperature molecular dynamics methods (1984) J. Chem. Phys, 81, p. 511
α-Helical structures drive early stages of self-assembly of amyloidogenic amyloid polypeptide aggregate formation in membranes
The human islet amyloid polypeptide (hIAPP) is the primary component in the toxic islet amyloid deposits in type-2 diabetes. hIAPP self-assembles to aggregates that permeabilize membranes and constitutes amyloid plaques. Uncovering the mechanisms of amyloid self-assembly is the key to understanding amyloid toxicity and treatment. Although structurally similar, hIAPP's rat counterpart, the rat islet amyloid polypeptide (rIAPP), is non-toxic. It has been a puzzle why these peptides behave so differently. We combined multiscale modelling and theory to explain the drastically different dynamics of hIAPP and rIAPP: The differences stem from electrostatic dipolar interactions. hIAPP forms pentameric aggregates with the hydrophobic residues facing the membrane core and stabilizing water-conducting pores. We give predictions for pore sizes, the number of hIAPP peptides, and aggregate morphology. We show the importance of curvature-induced stress at the early stages of hIAPP assembly and the α-helical structures over β-sheets. This agrees with recent fluorescence spectroscopy experiments.
α-Helical structures drive early stages of self-assembly of amyloidogenic amyloid polypeptide aggregate formation in membranes
Ciccarelli M, Sorriento D, Coscioni E, Iaccarino G, Santulli G * Adrenergic Receptors(261 views) Endocrinol Of The Heart In Health And Dis (ISSN: 9780-1280311249780128031117), 2016; N/D: 285-315. Impact Factor:0 ViewExport to BibTeXExport to EndNote
Kim YH, Shin SW, Pellicano R, Fagoonee S, Choi IJ, Kim YI, Park B, Choi JM, Kim SG, Choi J, Park JY, Oh S, Yang HJ, Lim JH, Im JP, Kim JS, Jung HC, Ponzetto A, Figura N, Malfertheiner P, Choi IJ, Kook MC, Kim YI, Cho SJ, Lee JY, Kim CG, Park B, Nam BH, Bae SE, Choi KD, Choe J, Kim SO, Na HK, Choi JY, Ahn JY, Jung KW, Lee J, Kim DH, Chang HS, Song HJ, Lee GH, Jung HY, Seta T, Takahashi Y, Noguchi Y, Shikata S, Sakai T, Sakai K, Yamashita Y, Nakayama T, Leja M, Park JY, Murillo R, Liepniece-karele I, Isajevs S, Kikuste I, Rudzite D, Krike P, Parshutin S, Polaka I, Kirsners A, Santare D, Folkmanis V, Daugule I, Plummer M, Herrero R, Tsukamoto T, Nakagawa M, Kiriyama Y, Toyoda T, Cao X, Corral JE, Mera R, Dye CW, Morgan DR, Lee YC, Lin JT, Garcia Martin R, Matia Cubillo A, Lee SH, Park JM, Han YM, Ko WJ, Hahm KB, Leontiadis GI, Ford AC, Ichinose M, Sugano K, Jeong M, Park JM, Han YM, Park KY, Lee DH, Yoo JH, Cho JY, Hahm KB, Bang CS, Baik GH, Shin IS, Kim JB, Suk KT, Yoon JH, Kim YS, Kim DJ * Helicobacter pylori Eradication for Prevention of Metachronous Recurrence after Endoscopic Resection of Early Gastric Cancer(297 views) N Engl J Med (ISSN: 0028-4793, 0028-4793linking, 1533-4406electronic), 2015 Jun; 30642104201566393291: 749-756. Impact Factor:59.558 ViewExport to BibTeXExport to EndNote
Kállay C, Dávid A, Timári S, Nagy EM, Sanna D, Garribba E, Micera G, De Bona P, Pappalardo G, Rizzarelli E, Sóvágó I * Copper(II) complexes of rat amylin fragments(357 views) Dalton T (ISSN: 1477-9234, 1477-9226, 1477-9234electronic), 2011 Oct 14; 40(38): 9711-9721. Impact Factor:3.838 ViewExport to BibTeXExport to EndNote