Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects(727 views) Rai M, Kon K, Ingle A, Duran N, Galdiero S, Galdiero M
Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444 602, Maharashtra, India
Department of Microbiology, Virology and Immunology, Kharkiv National Medical University, Kharkiv, Ukraine
Centre of Natural and Human Science, Universidade Federal Do ABC, Santo Andre, SP, Brazil
Biological Chemistry Laboratory, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil
Department of Pharmacy, University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
Division of Microbiology, Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138 Naples, Italy
CIRPEB University of Naples Federico II, Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Naples, Italy
References: Abebe, L., Silver impregnated ceramic water filters to treat Cryptosporidium parvum (2012) CGH Symposium, 1 October 2012, , http://prezi.com/fx_3-9w4ai0h/silver-nanoparticle-treated- cryptosporidium-parvum-response-in-mice/, Accessed 26 March 201
Abraham, I., El-Sayed, K., Chen, Z.S., Guo, H., Current status on marine products with reversal effect on cancer multidrug resistance (2012) Mar Drugs, 10, pp. 2312-2321
Adhikari, U., Ghosh, A., Chandra, G., Nanoparticles of herbal origin: A recent eco-friend trend in mosquito control (2013) Asian Pac J Trop Dis, 3, pp. 167-168
Allahverdiyev, A.M., Abamor, E.S., Bagirova, M., Rafailovich, M., Antimicrobial effects of TiO(2) and Ag(2)O nanoparticles against drug-resistant bacteria and leishmania parasites (2011) Future Microbiol, 6, pp. 933-940
Banerjee, M., Mallick, S., Paul, A., Chattopadhyay, A., Ghosh, S.S., Heightened reactive oxygen species generation in the antimicrobial activity of a three component iodinated chitosan-silver nanoparticle composite (2010) Langmuir, 26, pp. 5901-5908
Baram-Pinto, D., Shukla, S., Perkas, N., Gedanken, A., Sarid, R., Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate (2009) Bioconjug Chem, 20, pp. 1497-1502
Bawaskar, M., Gaikwad, S., Ingle, A., Rathod, D., Gade, A., Duran, N., Marcato, P.D., Rai, M., A new report on mycosynthesis of silver nanoparticles by Fusarium culmorum (2010) Curr Nanosci, 6, pp. 376-380
Bhattacharyya, S.S., Das, J., Das, S., Samadder, A., Das, D., De, A., Paul, S., Khuda-Bukhsh, A.R., Rapid green synthesis of silver nanoparticles from silver nitrate by a homeopathic mother tincture phytolacca decandra (2012) Zhong Xi Yi Jie He Xue Bao, 10, pp. 546-554
Birla, S.S., Tiwari, V.V., Gade, A.K., Ingle, A.P., Yadav, A.P., Rai, M.K., Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus (2009) Lett Appl Microbiol, 48, pp. 173-179
Bonde, S.R., Rathod, D.P., Ingle, A.P., Ade, R.B., Gade, A.K., Rai, M.K., Murraya koenigii-mediated synthesis of silver nanoparticles and its activity against three human pathogenic bacteria (2012) Nanosci Meth, 1, pp. 25-36
Conde, J., Doria, G., Baptista, P., Noble metal nanoparticles applications in cancer (2012) J Drug Deliv, pp. 1-12. , 751075
Dar, M.A., Ingle, A., Rai, M., Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics (2013) Nanomedicine NBM, 9, pp. 105-110
De-Gusseme, B., Sintubin, L., Baert, L., Thibo, E., Hennebel, T., Vermeulen, G., Uyttendaele, M., Boon, N., Biogenic silver for disinfection of water contaminated with viruses (2010) Appl Environ Microbiol, 76, pp. 1082-1087
De-Lima, R., Seabra, A.B., Durán, N., Silver nanoparticles: A brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles (2012) J Appl Toxicol, 32, pp. 867-879
De-Lima, R., Feitosa, L.O., Ballottin, D., Marcato, P.D., Tasic, L., Durán, N., Cytotoxicity and genotoxicity of biogenic silver nanoparticles (2013) J Phys Conf Series, 429, p. 012020
Devi, L.S., Joshi, S.R., Antimicrobial and synergistic effects of silver nanoparticles synthesized using soil fungi of high altitudes of Eastern Himalaya (2012) Mycobiol, 40, pp. 27-34
Durand, R., Bouvresse, S., Berdjane, Z., Izri, A., Chosidow, O., Clark, J.M., Insecticide resistance in head lice: Clinical, parasitological and genetic aspects (2012) Clin Microbiol Infect, 18, pp. 338-344
Elechiguerra, J.L., Burt, J.L., Morones, J.R., Camacho-Bragado, A., Gao, X., Lara, H.H., Yacaman, M.J., Interaction of silver nanoparticles with HIV-1 (2005) J Nanobiotechnol, 3, p. 6
Elliott, C., The effects of silver dressings on chronic and burns wound healing (2010) Br J Nurs, 19, pp. S32-S36
Fall, B., Pascual, A., Sarr, F.D., Wurtz, N., Richard, V., Baret, E., Diémé, Y., Pradines, B., Plasmodium falciparum susceptibility to antimalarial drugs in Dakar, Senegal, in 2010: An ex vivo and drug resistance molecular markers study (2013) Malar J, 12, p. 107
Fayaz, A.M., Ao, Z., Girilal, M., Chen, L., Xiao, X., Kalaichelvan, P., Yao, X., Inactivation of microbial infectiousness by silver nanoparticles-coated condom: A new approach to inhibit HIV- and HSV-transmitted infection (2012) Int J Nanomedicine, 7, pp. 5007-5018
Gade, A., Gaikwad, S., Tiwari, V., Yadav, A., Ingle, A., Rai, M., Biofabrication of silver nanoparticles by Opuntia ficus-indica: In vitro antibacterial activity and study of the mechanism involved in the synthesis (2010) Curr Nanosci, 6, pp. 370-375
Gajbhiye, M.B., Kesharwani, J.G., Ingle, A.P., Gade, A.K., Rai, M.K., Fungus mediated synthesis of silver nanoparticles and its activity against pathogenic fungi in combination of fluconazole (2009) Nanomedicine NBM, 5, pp. 282-286
Galdiero, S., Falanga, A., Vitiello, M., Marra, M.C.V., Galdiero, M., Silver nanoparticles as potential antiviral agents molecules (2011) Molecules, 16, pp. 8894-8918
Howard, C.R., Fletcher, N.F., Emerging virus diseases: Can we ever expect the unexpected? (2012) Emerg Microbes Infect, 1, pp. e46
Ingle, A., Gade, A., Pierrat, S., Sonnichsen, C., Rai, M., Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria (2008) Current Nanoscience, 4 (2), pp. 141-144. , http://www.ingentaconnect.com/content/ben/cnano/2008/00000004/00000002/ art00004, DOI 10.2174/157341308784340804
Jacob, S.J.P., Finu, J.S., Narayanan, A., Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line (2012) Colloids Surf B: Biointerfaces, 91, pp. 212-214
Jaidev, L.R., Narasimha, G., Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity (2010) Colloids Surf B: Biointerfaces, 81, pp. 430-433
Jain, K.K., Advances in the field of nano-oncology (2010) BMC Med, 8, pp. 1-11
Jayaseelan, C., Rahuman, A.A., Acaricidal efficacy of synthesized silver nanoparticles using aqueous leaf extract of Ocimum canum against Hyalomma anatolicum anatolicum and Hyalomma marginatum isaaci (Acari: Ixodidae) (2012) Parasitol Res, 111, pp. 1369-1378
Jeyaraj, M., Rajesh, M., Arun, R., MubarakAli, D., Sathishkumar, G., Sivanandhan, G., Dev, K.G., Ganapathi, A., An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells (2013) Colloids Surf B: Biointerfaces, 102, pp. 708-717
Jeyaraj, M., Sathishkumar, G., Sivanandhan, G., Mubarak-Ali, D., Rajesh, M., Arun, R., Apildev, G., Ganapathi, A., Biogenic silver nanoparticles for cancer treatment: An experimental report (2013) Colloids Surf B: Biointerfaces, 106, pp. 86-92
Jo, Y.K., Kim, B.H., Jung, G., Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi (2009) Plant Dis, 93, pp. 1037-1043
Johnson, A.P., Methicillin resistant Staphylococcus aureus: The European landscape (2011) J Antimicrob Chemother, 66, pp. iv43-iv48
Johnson, V.A., Calvez, V., Gunthard, H.F., Paredes, R., Pillay, D., Shafer, R.W., Wensing, A.M., Richman, D.D., Update of the drug resistance mutations in HIV-1: March 2013 (2013) Top Antivir Med, 21, pp. 6-14
Kamareddine, L., The biological control of the malaria vector (2012) Toxins, 4, pp. 748-767. , Basel
Kandile, N.G., Zaky, H.T., Mohamed, M.I., Mohamed, H.M., Silver nanoparticles effect on antimicrobial and antifungal activity of new heterocycles (2010) Bull Kor Chem Soc, 31, pp. 3530-3538
Kaur, P., Thakur, R., Choudhary, A., An in vitro study of the antifungal activity of silver/chitosan nanoformulations against important seed borne pathogens (2012) Int J Sci Technol Res, 1, pp. 83-86
Kilpatrick, A.M., Randolph, S.E., Drivers, dynamics, and control of emerging vector-borne zoonotic diseases (2012) Lancet, 380, pp. 1946-1955
Kim, K.J., Sung, W.S., Moon, S.K., Choi, J.S., Kim, J.G., Lee, D.G., Antifungal effect of silver nanoparticles on dermatophytes (2008) J Microbiol Biotechnol, 18, pp. 1482-1484
Korich, D.G., Mead, J.R., Madore, M.S., Sinclair, N.A., Sterling, C.R., Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability (1990) Applied and Environmental Microbiology, 56 (5), pp. 1423-1428
Lara, H.H., Ayala-Nunez, N.V., Ixtepan-Turrent, L., Rodriguez-Padilla, C., Mode of antiviral action of silver nanoparticles against HIV-1 (2010) J Nanobiotechnol, 8, p. 1
Lara, H.H., Ixtepan-Turrent, L., Garza-Treviño, E.N., Rodriguez-Padilla, C., PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture (2010) J Nanobiotechnol, 8, pp. 15-25
Liu, H.L., Dai, S.A., Fu, K.Y., Hsu, S.H., Antibacterial properties of silver nanoparticles in three different sizes and their nanocomposites with a new waterborne polyurethane (2010) Int J Nanomedicine, 5, pp. 1017-1028
Lu, L., Sun, R.W., Chen, R., Hui, C.K., Ho, C.M., Luk, J.M., Lau, G.K., Che, C.M., Silver nanoparticles inhibit hepatitis B virus replication (2008) Antivir Ther, 13, pp. 253-262
Marr, A.K., McGwire, B.S., McMaster, W.R., Modes of action of leishmanicidal antimicrobial peptides (2012) Future Microbiol, 7, pp. 1047-1059
Marsich, E., Travan, A., Donati, I., Turco, G., Kulkova, J., Moritz, N., Aro, H.T., Paoletti, S., Biological responses of silver-coated thermosets: An in vitro and in vivo study (2013) Acta Biomater, 9, pp. 5088-5099
Mehrbod, P., Motamed, N., Tabatabaian, M., Soleimani, E.R., Amini, E., Shahidi, M., Kheiri, M.T., In vitro antiviral effect of "nanosilver" on influenza virus (2009) DARU, 17, pp. 88-93
Misra, R., Acharya, S., Sahoo, S.K., Cancer nanotechnology: Application of nanotechnology in cancer therapy (2010) Drug Discov Today, 15, pp. 842-850
Mohebali, M., Rezayat, M.M., Gilani, K., Sarkar, S., Akhoundi, B., Esmaeili, J., Satvat, T., Hooshyar, H., Nanosilver in the treatment of localized cutaneous leishmaniasis caused by Leishmania major (MRHO/IR/75/ER): An in vitro and in vivo study (2009) DARU J Pharm Sci, 17, pp. 285-289
Murray, H.W., Susceptibility of Leishmania to oxygen intermediates and killing by normal macrophages (1981) J Exp Med, 153, pp. 1302-1315
Murugan, K., Shri, K.P., Barnard, D., (2013) Green Synthesis of Silver Nanoparticles from Botanical Sources and Their Use for Control of Medical Insects and Malaria Parasites, , http://www.ars.usda.gov/research/publications/publications.htm? seq_no_115=281989, Accessed 26 March 2013
Narasimha, G., Antiviral activity of silver nanoparticles synthesized by fungal strain Aspergillus niger (2012) J Nanosci Nanotechnol, 6 (1), pp. 18-20
Nasrollahi, A., Pourshamsian, K., Mansourkiaee, P., Antifungal activity of silver nanoparticles on some of fungi (2011) Int J Nanotechnol, 1, pp. 233-239
Nilforoushzadeh, M.A., Shirani-Bidabadi, L.A., Zolfaghari-Baghbaderani, A., Jafari, R., Heidari-Beni, M., Siadat, A., Ghahraman-Tabrizi, M., Topical effectiveness of different concentrations of nanosilver solution on Leishmania major lesions in balb/c mice (2012) J Vector Borne Dis, 49, pp. 249-253
Pal, S., Tak, Y.K., Song, J.M., Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli (2007) Applied and Environmental Microbiology, 73 (6), pp. 1712-1720. , DOI 10.1128/AEM.02218-06
Panneerselvam, C., Ponarulselvam, S., Murugan, K., Potential antiplasmodial activity of synthesized silver nanoparticle using Andrographis paniculata nees (Acanthaceae) (2011) Archives of Applied Science Research, 3 (6), pp. 208-217
Piao, M.J., Kang, K.A., Lee, I.K., Kim, H.S., Kim, S., Choi, Y.J., Choi, J., Hyun, J.W., Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis (2011) Toxicol Lett, 201, pp. 92-100
Ponarulselvam, S., Panneerselvam, C., Murugan, K., Aarthi, N., Kalimuthu, K., Thangamani, S., Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities (2012) Asian Pac J Trop Biomed, 2, pp. 574-580
Prabhu, D., Arulvasu, C., Babu, G., Manikandan, R., Srinivasan, P., Biologically synthesized green silver nanoparticles from leaf extract of Vitex negundo L. Induce growth-inhibitory effect on human colon cancer cell line HCT15 (2013) Process Biochem, 48, pp. 317-324
Qiao, W., Wang, B., Wang, Y., Yang, L., Zhang, Y., Shao, P., Cancer therapy based on nanomaterials and nanocarrier systems (2010) J Nanomater, pp. 1-9. , 796303
Raghavendra, K., Barik, T.K., Reddy, B.P., Sharma, P., Dash, A.P., Malaria vector control: From past to future (2011) Parasitol Res, 108, pp. 757-779
Raheman, F., Deshmukh, S., Ingle, A., Gade, A., Rai, M., Silver nanoparticles: Novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L) (2011) Nano Biomed Eng, 3 (3), pp. 174-178
Rai, M., Ingle, A., Role of nanotechnology in agriculture with special reference to management of insect pests (2012) Appl Microbiol Biotechnol, 94, pp. 287-293
Rai, M.K., Yadav, A.P., Gade, A.K., Silver nanoparticles as a new generation of antimicrobials (2009) Biotechnol Adv, 27, pp. 76-82
Rai, M., Gade, A., Gaikwad, S., Marcato, P.D., Durán, N., Biomedical applications of nanobiosensors: The state-of-the-art (2012) J Braz Chem Soc, 23, pp. 14-24
Rigo, C., Ferroni, L., Tocco, I., Roman, M., Munivrana, I., Gardin, C., Cairns, W.R., Zavan, B., Active silver nanoparticles for wound healing (2013) Int J Mol Sci, 14, pp. 4817-4840
Roger, J.V., Parkinson, C.V., Choi, Y.W., Speshock, J.L., Hussain, S.M., A Preliminary assessment of silver nanoparticle inhibition of monkeypox virus plciue formation (2008) Nanoscale Res Lett, 3, pp. 129-133
Rossi-Bergmann, B., Pacienza-Lima, W., Marcato, P.D., De-Conti, R., Durán, N., Therapeutic potential of biogenic silver nanoparticles in murine cutaneous leishmaniasis (2012) J Nano Res, 20, pp. 89-97
Said, D.E., Elsamad, L.M., Gohar, Y.M., Validity of silver, chitosan, and curcumin nanoparticles as anti-Giardia agents (2012) Parasitol Res, 111, pp. 545-554
Salem, A.N.B., Zyed, R., Lassoued, M.A., Nidhal, S., Sfar, S., Mahjoub, A., Plant-derived nanoparticles enhance antiviral activity against coxsakievirus B3 by acting on virus particles and vero cells (2012) Dig J Nanomater Biostruct, 7, pp. 737-744
Salunkhe, R.B., Patil, S.V., Patil, C.D., Salunke, B.K., Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera
Culicidae) (2011) Parasitol Res, 109, pp. 823-831
Satyavani, K., Gurudeeban, S., Ramanathan, T., Balasubramanian, T., Toxicity study of silver nanoparticles synthesized from Suaeda monoica on Hep-2 cell line (2012) Avicenna J Med Biotech, 4, pp. 35-39
Savithramma, N., Rao, M.L., Rukmini, K., Suvarnalatha-Devi, P., Antimicrobial activity of silver nanoparticles synthesized by using medicinal plants (2011) Int J Chem Technol Res, 3, pp. 1394-1402
Seigneuric, R., Markey, L., Nuyten, D.S.A., Dubernet, C., Evelo, C.T.A., Finot, E., Garrido, C., From nanotechnology to nanomedicine: Applications to cancer research (2010) Curr Mol Med, 10, pp. 640-652
Shameli, K., Ahmad, M.B., Jazayeri, S.D., Shabanzadeh, P., Sangpour, P., Jahangirian, H., Gharayebi, Y., Investigation of antibacterial properties silver nanoparticles prepared via green method (2012) Chem Central J, 6, p. 73
Shio, M.T., Olivier, M., Editorial: Leishmania survival mechanisms: The role of host phosphatases (2010) J Leukoc Biol, 88, pp. 1-3
Sondi, I., Salopek-Sondi, B., Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria (2004) Journal of Colloid and Interface Science, 275 (1), pp. 177-182. , DOI 10.1016/j.jcis.2004.02.012, PII S0021979704001638
Speshock, J.L., Murdock, R.C., Braydich-Stolle, L.K., Schrand, A.M., Hussain, S.M., Interaction of silver nanoparticles with tacaribe virus (2010) J Nanobiotechnol, 8, p. 19
Sriram, M.I., Barath, S., Kanth, M., Kalishwaralal, K., Gurunathan, S., Antitumor activity of silver nanoparticles in Dalton's lymphoma ascites tumor model (2010) Int J Nanomed, 5, pp. 753-762
Su, Y.H., Varhue, W., Liao, K.T., Swami, N., Characterizing silver nanoparticle-induced modifications to the dielectric response of Cryptosporidia oocysts (2012) Annual Meeting of the American Electrophoresis Society (AES)
Subarani, S., Sabhanayakam, S., Kamaraj, C., Studies on the impact of biosynthesized silver nanoparticles (AgNPs) in relation to malaria and filariasis vector control against Anopheles stephensi liston and Culex quinquefasciatus Say (Diptera: Culicidae) (2013) Parasitol Res, 112, pp. 487-499
Sun, R.W.-Y., Chen, R., Chung, N.P.-Y., Ho, C.-M., Lin, C.-L.S., Che, C.-M., Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells (2005) Chemical Communications, (40), pp. 5059-5061. , DOI 10.1039/b510984a
Sun, L., Singh, A.K., Vig, K., Pillai, S.R., Singh, S.R., Silver nanoparticles inhibit replication of respiratory syncytial virus (2008) J Biomed Biotechnol, 4, pp. 149-158
Tile, V.A., Bholay, A.D., Biosynthesis of silver nanoparticles and its antifungal activities (2012) J Environ Res Develop, 7, pp. 338-345
Trefry, J.C., Wooley, D.P., Silver nanoparticles inhibit vaccinia virus infection by preventing viral entry through a macropinocytosis-dependent mechanism (2013) J Biomed Nanotech, 9, pp. 1624-1635
Xiang, D.X., Chen, Q., Pang, L., Zheng, C.L., Inhibitory effects of silver nanoparticles on H1N1 influenza a virus in vitro (2011) J Virol Methods, 178, pp. 137-142
Xu, Y., Gao, C., Li, X., He, Y., Zhou, L., Pang, G., Sun, S., In vitro antifungal activity of silver nanoparticles against ocular pathogenic filamentous fungi (2013) J Ocul Pharmacol Ther, 29, pp. 270-274
Zhang, H., Smith, J.A., Oyanedel-Craver, V., The effect of natural water conditions on the anti-bacterial performance and stability of silver nanoparticles capped with different polymers (2012) Water Res, 46, pp. 691-699
Zhang, K., Li, F., Imazato, S., Cheng, L., Liu, H., Arola, D.D., Bai, Y., Xu, H.H., Dual antibacterial agents of nano-silver and 12- methacryloyloxydodecylpyridinium bromide in dental adhesive to inhibit caries (2013) J Biomed Mater Res B Appl Biomater, 101, pp. 929-938
Allahverdiyev, A. M., Abamor, E. S., Bagirova, M., Rafailovich, M., Antimicrobial effects of TiO (2) and Ag (2) O nanoparticles against drug-resistant bacteria and leishmania parasites (2011) Future Microbiol, 6, pp. 933-940
Bhattacharyya, S. S., Das, J., Das, S., Samadder, A., Das, D., De, A., Paul, S., Khuda-Bukhsh, A. R., Rapid green synthesis of silver nanoparticles from silver nitrate by a homeopathic mother tincture phytolacca decandra (2012) Zhong Xi Yi Jie He Xue Bao, 10, pp. 546-554
Birla, S. S., Tiwari, V. V., Gade, A. K., Ingle, A. P., Yadav, A. P., Rai, M. K., Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus (2009) Lett Appl Microbiol, 48, pp. 173-179
Bonde, S. R., Rathod, D. P., Ingle, A. P., Ade, R. B., Gade, A. K., Rai, M. K., Murraya koenigii-mediated synthesis of silver nanoparticles and its activity against three human pathogenic bacteria (2012) Nanosci Meth, 1, pp. 25-36
Dar, M. A., Ingle, A., Rai, M., Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics (2013) Nanomedicine NBM, 9, pp. 105-110
Devi, L. S., Joshi, S. R., Antimicrobial and synergistic effects of silver nanoparticles synthesized using soil fungi of high altitudes of Eastern Himalaya (2012) Mycobiol, 40, pp. 27-34
Elechiguerra, J. L., Burt, J. L., Morones, J. R., Camacho-Bragado, A., Gao, X., Lara, H. H., Yacaman, M. J., Interaction of silver nanoparticles with HIV-1 (2005) J Nanobiotechnol, 3, p. 6
Fayaz, A. M., Ao, Z., Girilal, M., Chen, L., Xiao, X., Kalaichelvan, P., Yao, X., Inactivation of microbial infectiousness by silver nanoparticles-coated condom: A new approach to inhibit HIV- and HSV-transmitted infection (2012) Int J Nanomedicine, 7, pp. 5007-5018
Gajbhiye, M. B., Kesharwani, J. G., Ingle, A. P., Gade, A. K., Rai, M. K., Fungus mediated synthesis of silver nanoparticles and its activity against pathogenic fungi in combination of fluconazole (2009) Nanomedicine NBM, 5, pp. 282-286
Howard, C. R., Fletcher, N. F., Emerging virus diseases: Can we ever expect the unexpected? (2012) Emerg Microbes Infect, 1, pp. e46
Jacob, S. J. P., Finu, J. S., Narayanan, A., Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line (2012) Colloids Surf B: Biointerfaces, 91, pp. 212-214
Jaidev, L. R., Narasimha, G., Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity (2010) Colloids Surf B: Biointerfaces, 81, pp. 430-433
Jain, K. K., Advances in the field of nano-oncology (2010) BMC Med, 8, pp. 1-11
Jo, Y. K., Kim, B. H., Jung, G., Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi (2009) Plant Dis, 93, pp. 1037-1043
Johnson, A. P., Methicillin resistant Staphylococcus aureus: The European landscape (2011) J Antimicrob Chemother, 66, pp. iv43-iv48
Johnson, V. A., Calvez, V., Gunthard, H. F., Paredes, R., Pillay, D., Shafer, R. W., Wensing, A. M., Richman, D. D., Update of the drug resistance mutations in HIV-1: March 2013 (2013) Top Antivir Med, 21, pp. 6-14
Kandile, N. G., Zaky, H. T., Mohamed, M. I., Mohamed, H. M., Silver nanoparticles effect on antimicrobial and antifungal activity of new heterocycles (2010) Bull Kor Chem Soc, 31, pp. 3530-3538
Kilpatrick, A. M., Randolph, S. E., Drivers, dynamics, and control of emerging vector-borne zoonotic diseases (2012) Lancet, 380, pp. 1946-1955
Kim, K. J., Sung, W. S., Moon, S. K., Choi, J. S., Kim, J. G., Lee, D. G., Antifungal effect of silver nanoparticles on dermatophytes (2008) J Microbiol Biotechnol, 18, pp. 1482-1484
Korich, D. G., Mead, J. R., Madore, M. S., Sinclair, N. A., Sterling, C. R., Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability (1990) Applied and Environmental Microbiology, 56 (5), pp. 1423-1428
Lara, H. H., Ayala-Nunez, N. V., Ixtepan-Turrent, L., Rodriguez-Padilla, C., Mode of antiviral action of silver nanoparticles against HIV-1 (2010) J Nanobiotechnol, 8, p. 1
Lara, H. H., Ixtepan-Turrent, L., Garza-Trevi o, E. N., Rodriguez-Padilla, C., PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture (2010) J Nanobiotechnol, 8, pp. 15-25
Liu, H. L., Dai, S. A., Fu, K. Y., Hsu, S. H., Antibacterial properties of silver nanoparticles in three different sizes and their nanocomposites with a new waterborne polyurethane (2010) Int J Nanomedicine, 5, pp. 1017-1028
Lu, L., Sun, R. W., Chen, R., Hui, C. K., Ho, C. M., Luk, J. M., Lau, G. K., Che, C. M., Silver nanoparticles inhibit hepatitis B virus replication (2008) Antivir Ther, 13, pp. 253-262
Marr, A. K., McGwire, B. S., McMaster, W. R., Modes of action of leishmanicidal antimicrobial peptides (2012) Future Microbiol, 7, pp. 1047-1059
Murray, H. W., Susceptibility of Leishmania to oxygen intermediates and killing by normal macrophages (1981) J Exp Med, 153, pp. 1302-1315
Pal, S., Tak, Y. K., Song, J. M., Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli (2007) Applied and Environmental Microbiology, 73 (6), pp. 1712-1720. , DOI 10. 1128/AEM. 02218-06
Piao, M. J., Kang, K. A., Lee, I. K., Kim, H. S., Kim, S., Choi, Y. J., Choi, J., Hyun, J. W., Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis (2011) Toxicol Lett, 201, pp. 92-100
Rai, M. K., Yadav, A. P., Gade, A. K., Silver nanoparticles as a new generation of antimicrobials (2009) Biotechnol Adv, 27, pp. 76-82
Roger, J. V., Parkinson, C. V., Choi, Y. W., Speshock, J. L., Hussain, S. M., A Preliminary assessment of silver nanoparticle inhibition of monkeypox virus plciue formation (2008) Nanoscale Res Lett, 3, pp. 129-133
Said, D. E., Elsamad, L. M., Gohar, Y. M., Validity of silver, chitosan, and curcumin nanoparticles as anti-Giardia agents (2012) Parasitol Res, 111, pp. 545-554
Salem, A. N. B., Zyed, R., Lassoued, M. A., Nidhal, S., Sfar, S., Mahjoub, A., Plant-derived nanoparticles enhance antiviral activity against coxsakievirus B3 by acting on virus particles and vero cells (2012) Dig J Nanomater Biostruct, 7, pp. 737-744
Salunkhe, R. B., Patil, S. V., Patil, C. D., Salunke, B. K., Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera
Shio, M. T., Olivier, M., Editorial: Leishmania survival mechanisms: The role of host phosphatases (2010) J Leukoc Biol, 88, pp. 1-3
Speshock, J. L., Murdock, R. C., Braydich-Stolle, L. K., Schrand, A. M., Hussain, S. M., Interaction of silver nanoparticles with tacaribe virus (2010) J Nanobiotechnol, 8, p. 19
Sriram, M. I., Barath, S., Kanth, M., Kalishwaralal, K., Gurunathan, S., Antitumor activity of silver nanoparticles in Dalton's lymphoma ascites tumor model (2010) Int J Nanomed, 5, pp. 753-762
Su, Y. H., Varhue, W., Liao, K. T., Swami, N., Characterizing silver nanoparticle-induced modifications to the dielectric response of Cryptosporidia oocysts (2012) Annual Meeting of the American Electrophoresis Society (AES)
Sun, R. W. -Y., Chen, R., Chung, N. P. -Y., Ho, C. -M., Lin, C. -L. S., Che, C. -M., Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells (2005) Chemical Communications, (40), pp. 5059-5061. , DOI 10. 1039/b510984a
Sun, L., Singh, A. K., Vig, K., Pillai, S. R., Singh, S. R., Silver nanoparticles inhibit replication of respiratory syncytial virus (2008) J Biomed Biotechnol, 4, pp. 149-158
Tile, V. A., Bholay, A. D., Biosynthesis of silver nanoparticles and its antifungal activities (2012) J Environ Res Develop, 7, pp. 338-345
Trefry, J. C., Wooley, D. P., Silver nanoparticles inhibit vaccinia virus infection by preventing viral entry through a macropinocytosis-dependent mechanism (2013) J Biomed Nanotech, 9, pp. 1624-1635
Xiang, D. X., Chen, Q., Pang, L., Zheng, C. L., Inhibitory effects of silver nanoparticles on H1N1 influenza a virus in vitro (2011) J Virol Methods, 178, pp. 137-142
Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects
There are alarming reports of growing microbial resistance to all classes of antimicrobial agents used against different infections. Also the existing classes of anticancer drugs used against different tumours warrant the urgent search for more effective alternative agents for treatment. Broad-spectrum bioactivities of silver nanoparticles indicate their potential to solve many microbial resistance problems up to a certain extent. The antibacterial, antifungal, antiviral, antiprotozoal, acaricidal, larvicidal, lousicidal and anticancer activities of silver nanoparticles have recently attracted the attention of scientists all over the world. The aim of the present review is to discuss broad-spectrum multifunctional activities of silver nanoparticles and stress their therapeutic potential as smart nanomedicine. Much emphasis has been dedicated to the antimicrobial and anticancer potential of silver nanoparticles showing their promising characteristics for treatment, prophylaxis and control of infections, as well as for diagnosis and treatment of different cancer types.
Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects
Kim YH, Shin SW, Pellicano R, Fagoonee S, Choi IJ, Kim YI, Park B, Choi JM, Kim SG, Choi J, Park JY, Oh S, Yang HJ, Lim JH, Im JP, Kim JS, Jung HC, Ponzetto A, Figura N, Malfertheiner P, Choi IJ, Kook MC, Kim YI, Cho SJ, Lee JY, Kim CG, Park B, Nam BH, Bae SE, Choi KD, Choe J, Kim SO, Na HK, Choi JY, Ahn JY, Jung KW, Lee J, Kim DH, Chang HS, Song HJ, Lee GH, Jung HY, Seta T, Takahashi Y, Noguchi Y, Shikata S, Sakai T, Sakai K, Yamashita Y, Nakayama T, Leja M, Park JY, Murillo R, Liepniece-karele I, Isajevs S, Kikuste I, Rudzite D, Krike P, Parshutin S, Polaka I, Kirsners A, Santare D, Folkmanis V, Daugule I, Plummer M, Herrero R, Tsukamoto T, Nakagawa M, Kiriyama Y, Toyoda T, Cao X, Corral JE, Mera R, Dye CW, Morgan DR, Lee YC, Lin JT, Garcia Martin R, Matia Cubillo A, Lee SH, Park JM, Han YM, Ko WJ, Hahm KB, Leontiadis GI, Ford AC, Ichinose M, Sugano K, Jeong M, Park JM, Han YM, Park KY, Lee DH, Yoo JH, Cho JY, Hahm KB, Bang CS, Baik GH, Shin IS, Kim JB, Suk KT, Yoon JH, Kim YS, Kim DJ * Helicobacter pylori Eradication for Prevention of Metachronous Recurrence after Endoscopic Resection of Early Gastric Cancer(297 views) N Engl J Med (ISSN: 0028-4793, 0028-4793linking, 1533-4406electronic), 2015 Jun; 30642104201566393291: 749-756. Impact Factor:59.558 ViewExport to BibTeXExport to EndNote