Keywords: Bacteria, Membrane, Peptide, Virus, Amyloid, Cell Penetrating Peptide, Liposome, Polypeptide Antibiotic Agent, Virus Fusion Protein, Antimicrobial Activity, Atomic Force Microscopy, Calorimetry, Cell Membrane Permeability, Computer Simulation, Drug Delivery System, Drug Structure, Drug Transport, Experimental Study, Fluorescence Spectroscopy, Human, Lipid Bilayer, Membrane Binding, Membrane Structure, Nonhuman, Nuclear Magnetic Resonance, Peptide Analysis, Protein Lipid Interaction, Review, Structure Analysis, Surface Plasmon Resonance, Theoretical Study, Virus Cell Interaction, X Ray Diffraction, Biotechnology, Lipid Bilayers Chemistry, Lipids Chemistry, Peptides Chemistry,
Affiliations: *** IBB - CNR ***
Department of Pharmacy, CIRPEB and DFM, University of Naples 'Federico II', Via Mezzocannone 16, 80134 Napoli, Italy
Institute of Biostructures and Bioimages, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
Department of Experimental Medicine, Second University of Naples, Via De Crecchio 7, 80138 Napoli, Italy
References: Galdiero, S., Vitiello, M., Falanga, A., Cantisani, M., Incoronato, N., Galdiero, M., Intracellular delivery: Exploiting viral membranotropic peptides (2012) Curr. Drug Metab, 13, pp. 93-10
Jung, J.J., Inamdar, S.M., Tiwari, A., Choudhury, A., Regulation of intracellular membrane trafficking and cell dynamics by syntaxin-6 (2012) Biosci. Rep, 32, pp. 383-391
Koch, M., Holt, M., Coupling exo and endocytosis: An essential role for PIP(2) at the synapse (2012) Biochim. Biophys. Acta, 1821, pp. 1114-1132
Galdiero, S., Editorial: Developments in membrane fusion (2009) Protein Pept. Lett, 16, p. 711
Sikorska, E., Ilowska, E., Wyrzykowski, D., Kwiatkowska, A., Membrane structure and interactions of peptide hormones with model lipid bilayers (2012) Biochim. Biophys. Acta, 1818, pp. 2982-2993
Romano, R., Musiol, H.J., Weyher, E., Dufresne, M., Moroder, L., Peptide hormone-membrane interactions: The aggregational and conformational state of lipo-gastrin derivatives and their receptor binding affinity (1992) Biopolymers, 32, pp. 1545-1558
Romano, R., Dufresne, M., Prost, M.C., Bali, J.P., Bayerl, T.M., Moroder, L., Peptide hormone-membrane interactions. Intervesicular transfer of lipophilic gastrin derivatives to artificial membranes and their bioactivities (1993) Biochim. Biophys. Acta, 1145, pp. 235-242
Cabiaux, V., Wolff, C., Ruysschaert, J.M., Interaction with a lipid membrane: A key step in bacterial toxins virulence (1997) Int. J. Biol. Macromol, 21, pp. 285-298
Lesieur, C., Vecsey-Semjen, B., Abrami, L., Fivaz, M., Membrane insertion: The strategies of toxins (review) (1997) Mol. Membr. Biol, 14, pp. 45-64
Galdiero, S., Gouaux, E., High resolution crystallographic studies of alpha-hemolysin-phospholipid complexes define heptamer-lipid head group interactions: Implication for understanding protein-lipid interactions (2004) Protein Sci, 13, pp. 1503-1511
Galdiero, S., Galdiero, M., Pedone, C., Beta-Barrel membrane bacterial proteins: Structure, function, assembly and interaction with lipids (2007) Curr. Protein Pept. Sci, 8, pp. 63-82
Wimley, W.C., White, S.H., Experimentally determined hydrophobicity scale for proteins at membrane interfaces (1996) Nat. Struct. Biol, 3, pp. 842-848
Shai, Y., Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides (1999) Biochim. Biophys. Acta, 1462, pp. 55-70
Sengupta, D., Leontiadou, H., Mark, A.E., Marrink, S.J., Toroidal pores formed by antimicrobial peptides show significant disorder (2008) Biochim. Biophys. Acta, 1778, pp. 2308-2317
Sonnino, S., Prinetti, A., Membrane domains and the "lipid raft" concept (2013) Curr. Med. Chem, 20, pp. 4-21
Abbassi, F., Galanth, C., Amiche, M., Saito, K., Piesse, C., Zargarian, L., Hani, K., Ladram, A., Solution structure and model membrane interactions of temporins-SH, antimicrobial peptides from amphibian skin. A NMR spectroscopy and differential scanning calorimetry study (2008) Biochemistry, 47, pp. 10513-10525
Domingues, T.M., Mattei, B., Seelig, J., Perez, K.R., Miranda, A., Riske, K.A., Interaction of the antimicrobial peptide gomesin with model membranes: A calorimetric study (2013) Langmuir, , doi:10.1021/la401596s
Szyk, A., Wu, Z., Tucker, K., Yang, D., Lu, W., Lubkowski, J., Crystal structures of human alpha-defensins HNP4, HD5, and HD6 (2006) Protein Sci, 15, pp. 2749-2760
Scudiero, O., Galdiero, S., Nigro, E., del Vecchio, L., di Noto, R., Cantisani, M., Colavita, I., Daniele, A., Chimeric beta-defensin analogs, including the novel 3NI analog, display salt-resistant antimicrobial activity and lack toxicity in human epithelial cell lines (2013) Antimicrob. Agents Chemother, 57, pp. 1701-1708
Frecer, V., Ho, B., Ding, J.L., De novo design of potent antimicrobial peptides (2004) Antimicrob. Agents Chemother, 48, pp. 3349-4457
Tossi, A., Sandri, L., Giangaspero, A., Amphipathic, alpha-helical antimicrobial peptides (2000) Biopolymers, 55, pp. 4-30
Lehrer, R.I., Ganz, T., Antimicrobial peptides in mammalian and insect host defence (1999) Curr. Opin. Immunol, 11, pp. 23-27
Fidai, S., Farmer, S.W., Hancock, R.E., Interaction of cationic peptides with bacterial membranes (1997) Methods Mol. Biol, 78, pp. 187-204
Niyonsaba, F., Nagaoka, I., Ogawa, H., Okumura, K., Multifunctional antimicrobial proteins and peptides: Natural activators of immune systems (2009) Curr. Pharm. Des, 15, pp. 2393-2413
Koczulla, A.R., Bals, R., Antimicrobial peptides: Current status and therapeutic potential (2003) Drugs, 63, pp. 389-406
Otvos Jr., L., Antibacterial peptides and proteins with multiple cellular targets (2005) J. Pept. Sci, 11, pp. 697-706
Galdiero, S., Falanga, A., Tarallo, R., Russo, L., Galdiero, E., Cantisani, M., Morelli, G., Galdiero, M., Peptide inhibitors against herpes simplex virus infections (2013) J. Pept. Sci, 19, pp. 148-158
Hancock, R.E., Cationic peptides: Effectors in innate immunity and novel antimicrobials (2001) Lancet Infect. Dis, 1, pp. 156-164
Powers, J.P., Hancock, R.E., The relationship between peptide structure and antibacterial activity (2003) Peptides, 24, pp. 1681-1691
Frankel, A.D., Pabo, C.O., Cellular uptake of the tat protein from human immunodeficiency virus (1988) Cell, 55, pp. 1189-1193
Derossi, D., Joliot, A.H., Chassaing, G., Prochiantz, A., The third helix of the Antennapedia homeodomain translocates through biological membranes (1994) J. Biol. Chem, 269, pp. 10444-10450
Said, H.F., Saleh, A.F., Abes, R., Gait, M.J., Lebleu, B., Cell penetrating peptides: Overview and applications to the delivery of oligonucleotides (2010) Cell. Mol. Life Sci, 67, pp. 715-726
Walther, C., Meyer, K., Rennert, R., Neundorf, I., Quantum dot-carrier peptide conjugates suitable for imaging and delivery applications (2008) Bioconjug. Chem, 19, pp. 2346-2356
Henriques, S.T., Costa, J., Castanho, M.A., Translocation of beta-galactosidase mediated by the cell-penetrating peptide pep-1 into lipid vesicles and human HeLa cells is driven by membrane electrostatic potential (2005) Biochemistry, 44, pp. 10189-10198
Liu, B.R., Huang, Y.W., Chiang, H.J., Lee, H.J., Cell-penetrating peptide-functionalized quantum dots for intracellular delivery (2010) J. Nanosci. Nanotechnol, 10, pp. 7897-7905
Xia, H., Gao, X., Gu, G., Liu, Z., Hu, Q., Tu, Y., Song, Q., Jiang, X., Penetratin-functionalized PEG-PLA nanoparticles for brain drug delivery (2012) Int. J. Pharm, 436, pp. 840-850
Desai, P., Patlolla, R.R., Singh, M., Interaction of nanoparticles and cell-enetrating peptides with skin for transdermal drug delivery (2010) Mol. Membr. Biol, 27, pp. 247-259
Liu, C., Liu, F., Feng, L., Li, M., Zhang, J., Zhang, N., The targeted co-delivery of DNA and doxorubicin to tumor cells via multifunctional PEI-PEG based nanoparticles (2013) Biomaterials, 34, pp. 2547-2564
Pan, L., Liu, J., He, Q., Wang, L., Shi, J., Overcoming multidrug resistance of cancer cells by direct intranuclear drug delivery using TAT-conjugated mesoporous silica nanoparticles (2013) Biomaterials, 34, pp. 2719-2730
Nori, A., Jensen, K.D., Tijerina, M., Kopeckova, P., Kopecek, J., Tat-conjugated synthetic macromolecules facilitate cytoplasmic drug delivery to human ovarian carcinoma cells (2003) Bioconjug. Chem, 14, pp. 44-50
Perche, F., Torchilin, V.P., Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting (2013) J. Drug Deliv, p. 705265
Koren, E., Torchilin, V.P., Cell-penetrating peptides: Breaking through to the other side (2012) Trends Mol. Med, 18, pp. 385-393
Heitz, F., Morris, M.C., Divita, G., Twenty years of cell-penetrating peptides: From molecular mechanisms to therapeutics (2009) Br. J. Pharmacol, 157, pp. 195-206
Chugh, A., Eudes, F., Shim, Y.S., Cell-penetrating peptides: Nanocarrier for macromolecule delivery in living cells (2010) IUBMB Life, 62, pp. 183-193
Walther, C., Ott, I., Gust, R., Neundorf, I., Specific labeling with potent radiolabels alters the uptake of cell-penetrating peptides (2009) Biopolymers, 92, pp. 445-451
Cosset, F.-L., Lavillette, D., 4-Cell. entry of enveloped viruses (2011) Adv. Genet, 73, pp. 121-183
Joanne, P., Nicolas, P., el Amri, C., Antimicrobial peptides and viral fusion peptides: How different they are? (2009) Protein Pept. Lett, 16, pp. 743-750
Brasseur, R., Vandenbranden, M., Cornet, B., Burny, A., Ruysschaert, J.M., Orientation into the lipid bilayer of an asymmetric amphipathic helical peptide located at the N-terminus of viral fusion proteins (1990) Biochim. Biophys Acta, 1029, pp. 267-273
Tristram-Nagle, S., Chan, R., Kooijman, E., Uppamoochikkal, P., Qiang, W., Weliky, D.P., Nagle, J.F., HIV fusion peptide penetrates, disorders, and softens T-cell membrane mimics (2010) J. Mol. Biol, 402, pp. 139-153
Arnold, E., Luo, M., Vriend, G., Rossmann, M.G., Palmenberg, A.C., Parks, G.D., Nicklin, M.J., Wimmer, E., Implications of the picornavirus capsid structure for polyprotein processing (1987) Proc. Natl. Acad. Sci. USA, 84, pp. 21-25
Ivanovic, T., Agosto, M.A., Zhang, L., Chandran, K., Harrison, S.C., Nibert, M.L., Peptides released from reovirus outer capsid form membrane pores that recruit virus particles (2008) EMBO J, 27, pp. 1289-1298
Arias, C.F., Romero, P., Alvarez, V., Lopez, S., Trypsin activation pathway of rotavirus infectivity (1996) J. Virol, 70, pp. 5832-5839
Greber, U.F., Webster, P., Weber, J., Helenius, A., The role of the adenovirus protease on virus entry into cells (1996) EMBO J, 15, pp. 1766-1777
da Costa, B., Chevalier, C., Henry, C., Huet, J.C., Petit, S., Lepault, J., Boot, H., Delmas, B., The capsid of infectious bursal disease virus contains several small peptides arising from the maturation process of pVP2 (2002) J. Virol, 76, pp. 2393-2402
Galloux, M., Libersou, S., Alves, I.D., Marquant, R., Salgado, G.F., Rezaei, H., Lepault, J., Morellet, N., NMR structure of a viral peptide inserted in artificial membranes: A view on the early steps of the birnavirus entry process (2010) J. Biol. Chem, 285, pp. 19409-19421
Harrison, S.C., (2005) Adv. Virus Res, 64, pp. 231-261. , Mechanism of membrane fusion by viral envelope proteins
Tarallo, R., Accardo, A., Falanga, A., Guarnieri, D., Vitiello, G., Netti, P., D'Errico, G., Galdiero, S., Clickable functionalization of liposomes with the gH625 peptide from Herpes simplex virus type I for intracellular drug delivery (2011) Chemistry, 17, pp. 12659-12668
Falanga, A., Vitiello, M.T., Cantisani, M., Tarallo, R., Guarnieri, D., Mignogna, E., Netti, P., Galdiero, S.A., A peptide derived from herpes simplex virus type 1 glycoprotein H: Membrane translocation and applications to the delivery of quantum dots (2011) Nanomedicine, 7, pp. 925-934
Wilson, M.R., Yerbury, J.J., Poon, S., Potential roles of abundant extracellular chaperones in the control of amyloid formation and toxicity (2008) Mol. Biosyst, 4, pp. 42-52
Sunde, M., Blake, C.C., From the globular to the fibrous state: Protein structure and structural conversion in amyloid formation (1998) Q. Rev. Biophys, 31, pp. 1-39
Anguiano, M., Nowak, R.J., Lansbury Jr., P.T., Protofibrillar islet amyloid polypeptide permeabilizes synthetic vesicles by a pore-like mechanism that may be relevant to type II diabetes (2002) Biochemistry, 41, pp. 11338-11343
Ahmad, E., Ahmad, A., Singh, S., Arshad, M., Khan, A.H., Khan, R.H., A mechanistic approach for islet amyloid polypeptide aggregation to develop anti-amyloidogenic agents for type-2 diabetes (2011) Biochimie, 93, pp. 793-805
Friedman, R., Aggregation of amyloids in a cellular context: Modelling and experiment (2011) Biochem. J, 438, pp. 415-426
Cho, J.E., Kim, J.R., Recent approaches targeting beta-amyloid for therapeutic intervention of Alzheimer's disease (2011) Recent Pat. CNS Drug Discov, 6, pp. 222-233
Sani, M.A., Gehman, J.D., Separovic, F., Lipid matrix plays a role in Abeta fibril kinetics and morphology (2011) FEBS Lett, 585, pp. 749-754
Jayasinghe, S.A., Langen, R., Lipid membranes modulate the structure of islet amyloid polypeptide (2005) Biochemistry, 44, pp. 12113-12119
Caillon, L., Lequin, O., Khemtemourian, L., Evaluation of membrane models and their composition for islet amyloid polypeptide-membrane aggregation (1828) Biochim. Biophys. Acta, 2013, pp. 2091-2098
Tomaselli, S., Esposito, V., Vangone, P., van Nuland, N.A., Bonvin, A.M., Guerrini, R., Tancredi, T., Picone, D., The alpha-to-beta conformational transition of Alzheimer's Abeta-(1-42) peptide in aqueous media is reversible: A step by step conformational analysis suggests the location of beta conformation seeding (2006) Chembiochem, 7, pp. 257-267
Engel, M.F., Yigittop, H., Elgersma, R.C., Rijkers, D.T., Liskamp, R.M., de Kruijff, B., Hoppener, J.W., Antoinette, K.J., Islet amyloid polypeptide inserts into phospholipid monolayers as monomer (2006) J. Mol. Biol, 356, pp. 783-789
Pellistri, F., Bucciantini, M., Relini, A., Nosi, D., Gliozzi, A., Robello, M., Stefani, M., Nonspecific interaction of prefibrillar amyloid aggregates with glutamatergic receptors results in Ca2+ increase in primary neuronal cells (2008) J. Biol. Chem, 283, pp. 29950-29960
Janson, J., Ashley, R.H., Harrison, D., McIntyre, S., Butler, P.C., The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles (1999) Diabetes, 48, pp. 491-498
Wood, S.J., Maleeff, B., Hart, T., Wetzel, R., Physical, morphological and functional differences between ph 5.8 and 7.4 aggregates of the Alzheimer's amyloid peptide Abeta (1996) J. Mol. Biol, 256, pp. 870-877
Klug, G.M., Losic, D., Subasinghe, S.S., Aguilar, M.I., Martin, L.L., Small, D.H., Beta-Amyloid protein oligomers induced by metal ions and acid pH are distinct from those generated by slow spontaneous ageing at neutral pH (2003) Eur. J. Biochem, 270, pp. 4282-4293
Khemtemourian, L., Domenech, E., Doux, J.P., Koorengevel, M.C., Killian, J.A., Low pH acts as inhibitor of membrane damage induced by human islet amyloid polypeptide (2011) J. Am. Chem. Soc, 133, pp. 15598-15604
Jan, A., Adolfsson, O., Allaman, I., Buccarello, A.L., Magistretti, P.J., Pfeifer, A., Muhs, A., Lashuel, H.A., Abeta42 neurotoxicity is mediated by ongoing nucleated polymerization process rather than by discrete Abeta42 species (2011) J. Biol. Chem, 286, pp. 8585-8596
Engel, M.F., Khemtemourian, L., Kleijer, C.C., Meeldijk, H.J., Jacobs, J., Verkleij, A.J., de Kruijff, B., Hoppener, J.W., Membrane damage by human islet amyloid polypeptide through fibril growth at the membrane (2008) Proc. Natl. Acad. Sci. USA, 105, pp. 6033-6038
Galdiero, S., Capasso, D., Vitiello, M., D'Isanto, M., Pedone, C., Galdiero, M., Role of surface-exposed loops of Haemophilus influenzae protein P2 in the mitogen-activated protein kinase cascade (2003) Infect. Immun, 71, pp. 2798-2809
Oreopoulos, J., Epand, R.F., Epand, R.M., Yip, C.M., Peptide-Induced domain formation in supported lipid bilayers: Direct evidence by combined atomic force and polarized total internal reflection fluorescence microscopy (2010) Biophys. J, 98, pp. 815-823
El Kirat, K., Morandat, S., Dufrene, Y.F., Nanoscale analysis of supported lipid bilayers using atomic force microscopy (2010) Biochim. Biophys. Acta, 1798, pp. 750-765
Garcia-Saez, A.J., Chiantia, S., Salgado, J., Schwille, P., Pore formation by a bax-derived peptide: Effect on the line tension of the membrane probed by AFM (2007) Biophys. J, 93, pp. 103-112
Volinsky, R., Kolusheva, S., Berman, A., Jelinek, R., Investigations of antimicrobial peptides in planar film systems (2006) Biochim. Biophys. Acta, 1758, pp. 1393-1407
Lohner, K., Prenner, E.J., Differential scanning calorimetry and X-ray diffraction studies of the specificity of the interaction of antimicrobial peptides with membrane-mimetic systems (1999) Biochim. Biophys. Acta, 1462, pp. 141-156
Pott, T., Maillet, J.C., Abad, C., Campos, A., Dufourcq, J., Dufourc, E.J., The lipid charge density at the bilayer surface modulates the effects of melittin on membranes (2001) Chem. Phys. Lipids, 109, pp. 209-223
Faucon, J.F., Bonmatin, J.M., Dufourcq, J., Dufourc, E.J., Acyl chain length dependence in the stability of melittin-phosphatidylcholine complexes. A light scattering and 31P-NMR study (1995) Biochim. Biophys. Acta, 1234, pp. 235-243
Castano, S., Desbat, B., Structure and orientation study of fusion peptide FP23 of gp41 from HIV-1 alone or inserted into various lipid membrane models (mono-, bi and multibi-layers) by FT-IR spectroscopies and Brewster angle microscopy (2005) Biochim. Biophys. Acta, 1715, pp. 81-95
Sani, M.A., Loudet, C., Grobner, G., Dufourc, E.J., Pro-apoptotic bax-alpha1 synthesis and evidence for beta-sheet to alpha-helix conformational change as triggered by negatively charged lipid membranes (2007) J. Pept. Sci, 13, pp. 100-106
Jean-Francois, F., Khemtemourian, L., Odaert, B., Castano, S., Grelard, A., Manigand, C., Bathany, K., Dufourc, E.J., Variability in secondary structure of the antimicrobial peptide Cateslytin in powder, solution, DPC micelles and at the air-water interface (2007) Eur. Biophys. J, 36, pp. 1019-1027
Vitiello, G., Falanga, A., Galdiero, M., Marsh, D., Galdiero, S., D'Errico, G., Lipid composition modulates the interaction of peptides deriving from herpes simplex virus type I glycoproteins B and H with biomembranes (2011) Biochim. Biophys. Acta, 1808, pp. 2517-2526
D'Errico, G., Ercole, C., Lista, M., Pizzo, E., Falanga, A., Galdiero, S., Spadaccini, R., Picone, D., Enforcing the positive charge of N-termini enhances membrane interaction and antitumor activity of bovine seminal ribonuclease (2011) Biochim. Biophys. Acta, 1808, pp. 3007-3015
Frey, S., Tamm, L.K., Orientation of melittin in phospholipid bilayers. A polarized attenuated total reflection infrared study (1991) Biophys. J, 60, pp. 922-930
Bechinger, B., Resende, J.M., Aisenbrey, C., The structural and topological analysis of membrane-associated polypeptides by oriented solid-state NMR spectroscopy: Established concepts and novel developments (2011) Biophys. Chem, 153, pp. 115-125
Resende, J.M., Moraes, C.M., Munhoz, V.H., Aisenbrey, C., Verly, R.M., Bertani, P., Cesar, A., Bechinger, B., Membrane structure and conformational changes of the antibiotic heterodimeric peptide distinctin by solid-state NMR spectroscopy (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 16639-16644
Salnikov, E., Rosay, M., Pawsey, S., Ouari, O., Tordo, P., Bechinger, B., Solid-state NMR spectroscopy of oriented membrane polypeptides at 100 K with signal enhancement by dynamic nuclear polarization (2010) J. Am. Chem. Soc, 132, pp. 5940-5941
Galdiero, S., Russo, L., Falanga, A., Cantisani, M., Vitiello, M., Fattorusso, R., Malgieri, G., Isernia, C., Structure and orientation of the gH625-644 membrane interacting region of herpes simplex virus type 1 in a membrane mimetic system (2012) Biochemistry, 51, pp. 3121-3128
la Rocca, P., Biggin, P.C., Tieleman, D.P., Sansom, M.S., Simulation studies of the interaction of antimicrobial peptides and lipid bilayers (1999) Biochim. Biophys. Acta, 1462, pp. 185-200
Biggin, P.C., Sansom, M.S., Interactions of alpha-helices with lipid bilayers: A review of simulation studies (1999) Biophys. Chem, 76, pp. 161-183
Karle, I.L., Perozzo, M.A., Mishra, V.K., Balaram, P., Crystal structure of the channel-forming polypeptide antiamoebin in a membrane-mimetic environment (1998) Proc. Natl. Acad. Sci. USA, 95, pp. 5501-5504
Merlino, A., Vitiello, G., Grimaldi, M., Sica, F., Busi, E., Basosi, R., D'Ursi, A.M., D'Errico, G., Destabilization of lipid membranes by a peptide derived from glycoprotein gp36 of feline immunodeficiency virus: A combined molecular dynamics/experimental study (2012) J. Phys. Chem. B, 116, pp. 401-412
Vitiello, G., Fragneto, G., Petruk, A.A., Falanga, A., Galdiero, S., D'Ursi, A.M., Merlino, A., D'Errico, G., Cholesterol 1 modulates the fusogenic activity of a membranotropic domain of the FIV glycoprotein gp36 (2013) Soft Matter, , doi:10.1039/c3sm50553g
Rankenberg, J.M., Vostrikov, V.V., Greathouse, D.V., Grant, C.V., Opella, S.J., Koeppe II, R.E., Properties of membrane-incorporated WALP peptides that are anchored on only one end (2012) Biochemistry, 51, pp. 10066-10074
Park, S.H., de Angelis, A.A., Nevzorov, A.A., Wu, C.H., Opella, S.J., Three-dimensional structure of the transmembrane domain of Vpu from HIV-1 in aligned phospholipid bicelles (2006) Biophys. J, 91, pp. 3032-3042
Strandberg, E., Zerweck, J., Wadhwani, P., Ulrich, A.S., Synergistic nsertion of antimicrobial magainin-family peptides in membranes depends on the lipid spontaneous curvature (2013) Biophys. J, 104, pp. L9-L11
Song, C., Weichbrodt, C., Salnikov, E.S., Dynowski, M., Forsberg, B.O., Bechinger, B., Steinem, C., Zeth, K., Crystal structure and functional mechanism of a human antimicrobial membrane channel (2013) Proc. Natl. Acad. Sci. USA, 110, pp. 4586-4591
D'Ursi, A.M., Armenante, M.R., Guerrini, R., Salvadori, S., Sorrentino, G., Picone, D., Solution structure of amyloid beta-peptide (25-35) in different media (2004) J. Med. Chem, 47, pp. 4231-4238
Warschawski, D.E., Arnold, A.A., Beaugrand, M., Gravel, A., Chartrand, E., Marcotte, I., Choosing membrane mimetics for NMR structural studies of transmembrane proteins (2011) Biochim. Biophys. Acta, 1808, pp. 1957-1974
Kallick, D.A., Tessmer, M.R., Watts, C.R., Li, C.Y., The use of dodecylphosphocholine micelles in solution NMR (1995) J. Magn. Reson. B, 109, pp. 60-65
Keifer, P.A., Peterkofsky, A., Wang, G., Effects of detergent alkyl chain length and chemical structure on the properties of a micelle-bound bacterial membrane targeting peptide (2004) Anal. Biochem, 331, pp. 33-39
Prosser, R.S., Evanics, F., Kitevski, J.L., Al-Abdul-Wahid, M.S., Current applications of bicelles in NMR studies of membrane-associated amphiphiles and proteins (2006) Biochemistry, 45, pp. 8453-8465
Tamm, L.K., Abildgaard, F., Arora, A., Blad, H., Bushweller, J.H., Structure, dynamics and function of the outer membrane protein A (OmpA) and influenza hemagglutinin fusion domain in detergent micelles by solution NMR (2003) FEBS Lett, 555, pp. 139-143
Shenkarev, Z.O., Balashova, T.A., Efremov, R.G., Yakimenko, Z.A., Ovchinnikova, T.V., Raap, J., Arseniev, A.S., Spatial structure of zervamicin IIB bound to DPC micelles: Implications for voltage-gating (2002) Biophys. J, 82, pp. 762-771
Gao, X., Wong, T.C., Studies of the binding and structure of adrenocorticotropin peptides in membrane mimics by NMR spectroscopy and pulsed-field gradient diffusion (1998) Biophys. J, 74, pp. 1871-1888
Appelt, C., Wessolowski, A., Soderhall, J.A., Dathe, M., Schmieder, P., Structure of the antimicrobial, cationic hexapeptide cyclo(RRWWRF) and its analogues in solution and bound to detergent micelles (2005) Chembiochem, 6, pp. 1654-1662
Tjandra, N., Bax, A., Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium (1997) Science, 278, pp. 1111-1114
Brown, L.R., Bosch, C., Wuthrich, K., Location and orientation relative to the micelle surface for glucagon in mixed micelles with dodecylphosphocholine: EPR and NMR studies (1981) Biochim. Biophys. Acta, 642, pp. 296-312
Prosser, R.S., Luchette, P.A., Westerman, P.W., Using O2 to probe membrane immersion depth by 19F NMR (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 9967-9971
Hilty, C., Wider, G., Fernandez, C., Wuthrich, K., Membrane protein-lipid interactions in mixed micelles studied by NMR spectroscopy with the use of paramagnetic reagents (2004) Chembiochem, 5, pp. 467-473
Laws, D.D., Bitter, H.M., Jerschow, A., Solid-state NMR spectroscopic methods in chemistry (2002) Angew. Chem. Int. Ed. Engl, 41, pp. 3096-3129
Marsh, D., Orientation and peptide-lipid interactions of alamethicin incorporated in phospholipid membranes: Polarized infrared and spin-label EPR spectroscopy (2009) Biochemistry, 48, pp. 729-737
D'Errico, G., D'Ursi, A.M., Marsh, D., Interaction of a peptide derived from glycoprotein gp36 of feline immunodeficiency virus and its lipoylated analogue with phospholipid membranes (2008) Biochemistry, 47, pp. 5317-5327
Inbaraj, J.J., Cardon, T.B., Laryukhin, M., Grosser, S.M., Lorigan, G.A., Determining the topology of integral membrane peptides using EPR spectroscopy (2006) J. Am. Chem. Soc, 128, pp. 9549-9554
Spadaccini, R., D'Errico, G., D'Alessio, V., Notomista, E., Bianchi, A., Merola, M., Picone, D., Structural characterization of the transmembrane proximal region of the hepatitis C virus E1 glycoprotein (2010) Biochim. Biophys.Acta, 1798, pp. 344-353
Inbaraj, J.J., Laryukhin, M., Lorigan, G.A., Determining the helical tilt angle of a transmembrane helix in mechanically aligned lipid bilayers using EPR spectroscopy (2007) J. Am. Chem. Soc, 129, pp. 7710-7711
Mayo, D.J., Inbaraj, J.J., Subbaraman, N., Grosser, S.M., Chan, C.A., Lorigan, G.A., Comparing the structural topology of integral and peripheral membrane proteins utilizing electron paramagnetic resonance spectroscopy (2008) J. Am. Chem. Soc, 130, pp. 9656-9657
Esposito, C., Tedeschi, A., Scrima, M., D'Errico, G., Ottaviani, M.F., Rovero, P., D'Ursi, A.M., Exploring interaction of beta-amyloid segment (25-35) with membrane models through paramagnetic probes (2006) J. Pept. Sci, 12, pp. 766-774
Im, W., Feig, M., Brooks III, C.L., An implicit membrane generalized born theory for the study of structure, stability, and interactions of membrane proteins (2003) Biophys. J, 85, pp. 2900-2918
Im, W., Lee, M.S., Brooks III, C.L., Generalized born model with a simple smoothing function (2003) J. Comput. Chem, 24, pp. 1691-1702
Ulmschneider, M.B., Sansom, M.S., di Nola, A., Properties of integral membrane protein structures: Derivation of an implicit membrane potential (2005) Proteins, 59, pp. 252-265
la Rocca, P., Shai, Y., Sansom, M.S., Peptide-bilayer interactions: Simulations of dermaseptin B, an antimicrobial peptide (1999) Biophys. Chem, 76, pp. 145-159
Herce, H.D., Garcia, A.E., Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 TAT peptide across lipid membranes (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 20805-20810
Yesylevskyy, S., Marrink, S.J., Mark, A.E., Alternative mechanisms for the interaction of the cell-penetrating peptides penetratin and the TAT peptide with lipid bilayers (2009) Biophys. J, 97, pp. 40-49
Marrink, S.J., Risselada, H.J., Yefimov, S., Tieleman, D.P., de Vries, A.H., The MARTINI force field: Coarse grained model for biomolecular simulations (2007) J. Phys. Chem. B, 111, pp. 7812-7824
Bond, P.J., Sansom, M.S., Insertion and assembly of membrane proteins via simulation (2006) J. Am. Chem. Soc, 128, pp. 2697-2704
Bond, P.J., Parton, D.L., Clark, J.F., Sansom, M.S., Coarse-grained simulations of the membrane-active antimicrobial Peptide maculatin 1.1 (2008) Biophys. J, 95, pp. 3802-3815
Bond, P.J., Holyoake, J., Ivetac, A., Khalid, S., Sansom, M.S., Coarse-grained molecular dynamics simulations of membrane proteins and peptides (2007) J. Struct. Biol, 157, pp. 593-605
Cox, K., Sansom, M.S., One membrane protein, two structures and six environments: A comparative molecular dynamics simulation study of the bacterial outer membrane protein PagP (2009) Mol. Membr. Biol, 26, pp. 205-214
Khalid, S., Bond, P.J., Holyoake, J., Hawtin, R.W., Sansom, M.S., DNA and lipid bilayers: Self-assembly and insertion (2008) J. R. Soc. Interface, 5, pp. S241-S250
Risselada, H.J., Marrink, S.J., Curvature effects on lipid packing and dynamics in liposomes revealed by coarse grained molecular dynamics simulations (2009) Phys. Chem. Chem. Phys, 11, pp. 2056-2067
Gkeka, P., Sarkisov, L., Spontaneous formation of a barrel-stave pore in a oarse-grained model of the synthetic LS3 peptide and a DPPC lipid bilayer (2009) J. Phys. Chem. B, 113, pp. 6-8
Ladokhin, A.S., Jayasinghe, S., White, S.H., How to measure and analyze tryptophan fluorescence in membranes properly, and why bother? (2000) Anal. Biochem, 285, pp. 235-245
Christiaens, B., Symoens, S., Verheyden, S., Engelborghs, Y., Joliot, A., Rochiantz, A., Vandekerckhove, J., Vanloo, B., Tryptophan fluorescence study of the interaction of penetratin peptides with model membranes (2002) Eur. J. Biochem, 269, pp. 2918-2926
de Kroon, A.I., Soekarjo, M.W., de Gier, J., de Kruijff, B., The role of charge and hydrophobicity in peptide-lipid interaction: A comparative study based on tryptophan fluorescence measurements combined with the use of aqueous and hydrophobic quenchers (1990) Biochemistry, 29, pp. 8229-8240
Esbjorner, E.K., Oglecka, K., Lincoln, P., Graslund, A., Norden, B., Membrane binding of pH-sensitive influenza fusion peptides. Positioning, configuration, and induced leakage in a lipid vesicle model (2007) Biochemistry, 46, pp. 13490-13504
Ortiz, A., Cajal, Y., Haro, I., Reig, F., Alsina, M.A., Fluorescence study on the interaction of a multiple antigenic peptide from hepatitis A virus with lipid vesicles (2000) Biopolymers, 53, pp. 455-466
Moreno, M.R., Perez-Berna, A.J., Guillen, J., Villalain, J., Biophysical characterization and membrane interaction of the most membranotropic region of the HIV-1 gp41 endodomain (2008) Biochim. Biophys. Acta, 1778, pp. 1298-1307
Reshetnyak, Y.K., Segala, M., Andreev, O.A., Engelman, D.M., A monomeric membrane peptide that lives in three worlds: In solution, attached to, and inserted across lipid bilayers (2007) Biophys. J, 93, pp. 2363-2372
Bittova, L., Stahelin, R.V., Cho, W., Roles of ionic residues of the C1 domain in protein kinase C-alpha activation and the origin of phosphatidylserine specificity (2001) J. Biol. Chem, 276, pp. 4218-4226
Stahelin, R.V., Burian, A., Bruzik, K.S., Murray, D., Cho, W., Membrane binding mechanisms of the PX domains of NADPH oxidase p40phox and p47phox (2003) J. Biol. Chem, 278, pp. 14469-14479
Thomas, C.J., Surolia, N., Surolia, A., Surface plasmon resonance studies resolve the enigmatic endotoxin neutralizing activity of polymyxin B (1999) J. Biol. Chem, 274, pp. 29624-29627
Mozsolits, H., Wirth, H.J., Werkmeister, J., Aguilar, M.I., Analysis of antimicrobial peptide interactions with hybrid bilayer membrane systems using surface plasmon resonance (2001) Biochim. Biophys. Acta, 1512, pp. 64-76
Papo, N., Shai, Y., Can we predict biological activity of antimicrobial peptides from their interactions with model phospholipid membranes? (2003) Peptides, 24, pp. 1693-1703
Kremer, J.J., Murphy, R.M., Kinetics of adsorption of beta-amyloid peptide Abeta(1-40) to lipid bilayers (2003) J. Biochem. Biophys. Methods, 57, pp. 159-169
Kalb, E., Frey, S., Tamm, L.K., Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers (1992) Biochim. Biophys. Acta, 1103, pp. 307-316
Myszka, D.G., Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors (1997) Curr. Opin. Biotechnol, 8, pp. 50-57
Karlsson, R., Falt, A., Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors (1997) J. Immunol. Methods, 200, pp. 121-133
Schuck, P., Reliable determination of binding affinity and kinetics using surface Plasmon resonance biosensors (1997) Curr. Opin. Biotechnol, 8, pp. 498-502
Eid, M., Rippa, S., Castano, S., Desbat, B., Chopineau, J., Rossi, C., Beven, L., Exploring the membrane mechanism of the bioactive peptaibol ampullosporin a using lipid monolayers and supported biomimetic membranes (2010) J. Biophys, 2010, p. 179641
Prenner, E.J., Lewis, R.N.A.H., Kondejewski, L.H., Hodges, R.S., McElhaney, R.N., Differential scanning calorimetric study of the effect of the antimicrobial peptide gramicidin S on the thermotropic phase behavior of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol lipid bilayer membranes (1999) Biochim. Biophys. Acta, 1417, pp. 211-223
Woody, R.W., Circular dichroism (1995) Methods Enzymol, 246, pp. 34-71
Wallace, B.A., Lees, J.G., Orry, A.J., Lobley, A., Janes, R.W., Analyses of circular dichroism spectra of membrane proteins (2003) Protein Sci, 12, pp. 875-884
Wu, Y., Huang, H.W., Olah, G.A., Method of oriented circular dichroism (1990) Biophys. J, 57, pp. 797-806
Nielsen, S.B., Otzen, D.E., Impact of the antimicrobial peptide Novicidin on membrane structure and integrity (2010) J. Colloid Interface Sci, 345, pp. 248-256
Cheng, J.T., Hale, J.D., Elliot, M., Hancock, R.E., Straus, S.K., Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs (2009) Biophys. J, 96, pp. 552-565
Alves, I.D., Jiao, C.Y., Aubry, S., Aussedat, B., Burlina, F., Chassaing, G., Sagan, S., Cell biology meets biophysics to unveil the different mechanisms of penetratin internalization in cells (2010) Biochim. Biophys. Acta, 1798, pp. 2231-2239
Kamei, N., Nielsen, E.J.B., Khafagy, E.-S., Takeda-Morishita, M., Noninvasive insulin delivery: The great potential of cell-penetrating peptides (2013) Ther. Deliv, 4, pp. 315-326
Macewan, S.R., Chilkoti, A., Harnessing the power of cell-penetrating peptides: Activatable carriers for targeting systemic delivery of cancer therapeutics and imaging agents (2013) Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol, 5, pp. 31-48
Fominaya, J., Wels, W., Target cell-specific DNA Target cell-specific DNA transfer mediated by a chimeric multidomain protein. Novel non-viral gene delivery system (1996) J. Biol. Chem, 271, pp. 10560-10568
Deshayes, S., Morris, M., Heitz, F., Divita, G., Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy (2008) Adv. Drug Deliv. Rev, 60, pp. 537-547
Deshayes, S., Gerbal-Chaloin, S., Morris, M.C., Aldrian-Herrada, G., Charnet, P., Divita, G., Heitz, F., On the mechanism of non-endosomial peptide-mediated cellular delivery of nucleic acids (2004) Biochim. Biophys. Acta, 1667, pp. 141-147
Funhoff, A.M., van Nostrum, C.F., Lok, M.C., Fretz, M.M., Crommelin, D.J., Hennink, W.E., Poly(3-guanidinopropyl methacrylate): A novel cationic polymer for gene delivery (2004) Bioconjug. Chem, 15, pp. 1212-1220
Jiang, X., Lok, M.C., Hennink, W.E., Degradable-brushed pHEMA-pDMAEMA synthesized via ATRP and click chemistry for gene delivery (2007) Bioconjug. Chem, 18, pp. 2077-2084
Mastrobattista, E., Koning, G.A., van Bloois, L., Filipe, A.C., Jiskoot, W., Storm, G., Functional characterization of an endosome-disruptive peptide and its application in cytosolic delivery of immunoliposome-entrapped proteins (2002) J. Biol. Chem, 277, pp. 27135-27143
Fretz, M.M., Mastrobattista, E., Koning, G.A., Jiskoot, W., Storm, G., Strategies for cytosolic delivery of liposomal macromolecules (2005) Int. J. Pharm, 298, pp. 305-309
Simeoni, F., Morris, M.C., Heitz, F., Divita, G., Insight into the mechanism of the peptide-based gene delivery system MPG: Implications for delivery of siRNA into mammalian cells (2003) Nucleic Acids Res, 31, pp. 2717-2724
Carberry, T.P., Tarallo, R., Falanga, A., Finamore, E., Galdiero, M., Weck, M., Galdiero, S., Dendrimer functionalization with a membrane-interacting domain of herpes simplex virus type 1: Towards intracellular delivery (2012) Chemistry, 18, pp. 13678-13685
Guarnieri, D., Falanga, A., Muscetti, O., Tarallo, R., Fusco, S., Galdiero, M., Galdiero, S., Netti, P.A., Shuttle-mediated nanoparticle delivery to the blood-brain barrier (2013) Small, 9, pp. 853-862
Tarallo, R., Carberry, T.P., Falanga, A., Vitiello, M., Galdiero, S., Galdiero, M., Weck, M., Dendrimers functionalized with membrane-interacting peptides for viral inhibition (2013) Int. J. Nanomed, 8, pp. 521-534
Smaldone, G., Falanga, A., Capasso, D., Guarnieri, D., Correale, S., Galdiero, M., Netti, P.A., di Gaetano, S., GH625 is a viral derived peptide for effective delivery of Intrinsically disordered proteins (2013) Int. J. Nanomed, 8, pp. 2555-2565
Hard, T., Lendel, C., Inhibition of amyloid formation (2012) J. Mol. Biol, 421, pp. 441-465
Wagner, J., Ryazanov, S., Leonov, A., Levin, J., Shi, S., Schmidt, F., Prix, C., Et al., Anle138b: A novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and Parkinson's disease (2013) Acta Neuropathol, 125, pp. 795-813
Dorgeret, B., Khemtemourian, L., Correia, I., Soulier, J.L., Lequin, O., Ongeri, S., Sugar-based peptidomimetics inhibit amyloid beta-peptide aggregation (2011) Eur. J. Med. Chem, 46, pp. 5959-5969
Castelletto, V., Cheng, G., Hamley, I.W., Amyloid peptides incorporating a core sequence from the amyloid beta peptide and gamma amino acids: Relating bioactivity to self-assembly (2011) Chem. Commun. (Camb), 47, pp. 12470-12472
Kumar, S., Miranker, A.D., A foldamer approach to targeting membrane bound helical states of islet amyloid polypeptide (2013) Chem. Commun. (Camb.), 49, pp. 4749-4751
Tjernberg, L.O., Naslund, J., Lindqvist, F., Johansson, J., Karlstrom, A.R., Thyberg, J., Terenius, L., Nordstedt, C., Arrest of beta-amyloid fibril formation by a pentapeptide ligand (1996) J. Biol. Chem, 271, pp. 8545-8548
Hughes, E., Burke, R.M., Doig, A.J., Inhibition of toxicity in the beta-amyloid peptide fragment beta-(25-35) using N-methylated derivatives: A general strategy to prevent amyloid formation (2000) J. Biol. Chem, 275, pp. 25109-25115
Soto, C., Sigurdsson, E.M., Morelli, L., Kumar, R.A., Castano, E.M., Frangione, B., Beta-Sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: Implications for Alzheimer's therapy (1998) Nat. Med, 4, pp. 822-826
Jung, J. J., Inamdar, S. M., Tiwari, A., Choudhury, A., Regulation of intracellular membrane trafficking and cell dynamics by syntaxin-6 (2012) Biosci. Rep, 32, pp. 383-391
Wimley, W. C., White, S. H., Experimentally determined hydrophobicity scale for proteins at membrane interfaces (1996) Nat. Struct. Biol, 3, pp. 842-848
Hancock, R. E., Chapple, D. S., Peptide antibiotics (1999) Antimicrob. Agents Chemother, 43, pp. 1317-1323
Domingues, T. M., Mattei, B., Seelig, J., Perez, K. R., Miranda, A., Riske, K. A., Interaction of the antimicrobial peptide gomesin with model membranes: A calorimetric study (2013) Langmuir, , doi: 10. 1021/la401596s
Lehrer, R. I., Ganz, T., Antimicrobial peptides in mammalian and insect host defence (1999) Curr. Opin. Immunol, 11, pp. 23-27
Koczulla, A. R., Bals, R., Antimicrobial peptides: Current status and therapeutic potential (2003) Drugs, 63, pp. 389-406
Hancock, R. E., Cationic peptides: Effectors in innate immunity and novel antimicrobials (2001) Lancet Infect. Dis, 1, pp. 156-164
Powers, J. P., Hancock, R. E., The relationship between peptide structure and antibacterial activity (2003) Peptides, 24, pp. 1681-1691
Brogden, K. A., Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? (2005) Nat. Rev. Microbiol, 3, pp. 238-250
Lehrer, R. I., Primate defensins (2004) Nat. Rev. Microbiol, 2, pp. 727-738
Frankel, A. D., Pabo, C. O., Cellular uptake of the tat protein from human immunodeficiency virus (1988) Cell, 55, pp. 1189-1193
Said, H. F., Saleh, A. F., Abes, R., Gait, M. J., Lebleu, B., Cell penetrating peptides: Overview and applications to the delivery of oligonucleotides (2010) Cell. Mol. Life Sci, 67, pp. 715-726
Henriques, S. T., Costa, J., Castanho, M. A., Translocation of beta-galactosidase mediated by the cell-penetrating peptide pep-1 into lipid vesicles and human HeLa cells is driven by membrane electrostatic potential (2005) Biochemistry, 44, pp. 10189-10198
Liu, B. R., Huang, Y. W., Chiang, H. J., Lee, H. J., Cell-penetrating peptide-functionalized quantum dots for intracellular delivery (2010) J. Nanosci. Nanotechnol, 10, pp. 7897-7905
Cosset, F. -L., Lavillette, D., 4-Cell. entry of enveloped viruses (2011) Adv. Genet, 73, pp. 121-183
Arias, C. F., Romero, P., Alvarez, V., Lopez, S., Trypsin activation pathway of rotavirus infectivity (1996) J. Virol, 70, pp. 5832-5839
Greber, U. F., Webster, P., Weber, J., Helenius, A., The role of the adenovirus protease on virus entry into cells (1996) EMBO J, 15, pp. 1766-1777
Harrison, S. C., (2005) Adv. Virus Res, 64, pp. 231-261. , Mechanism of membrane fusion by viral envelope proteins
Wilson, M. R., Yerbury, J. J., Poon, S., Potential roles of abundant extracellular chaperones in the control of amyloid formation and toxicity (2008) Mol. Biosyst, 4, pp. 42-52
Cho, J. E., Kim, J. R., Recent approaches targeting beta-amyloid for therapeutic intervention of Alzheimer's disease (2011) Recent Pat. CNS Drug Discov, 6, pp. 222-233
Sani, M. A., Gehman, J. D., Separovic, F., Lipid matrix plays a role in Abeta fibril kinetics and morphology (2011) FEBS Lett, 585, pp. 749-754
Jayasinghe, S. A., Langen, R., Lipid membranes modulate the structure of islet amyloid polypeptide (2005) Biochemistry, 44, pp. 12113-12119
Engel, M. F., Yigittop, H., Elgersma, R. C., Rijkers, D. T., Liskamp, R. M., de Kruijff, B., Hoppener, J. W., Antoinette, K. J., Islet amyloid polypeptide inserts into phospholipid monolayers as monomer (2006) J. Mol. Biol, 356, pp. 783-789
Wood, S. J., Maleeff, B., Hart, T., Wetzel, R., Physical, morphological and functional differences between ph 5. 8 and 7. 4 aggregates of the Alzheimer's amyloid peptide Abeta (1996) J. Mol. Biol, 256, pp. 870-877
Klug, G. M., Losic, D., Subasinghe, S. S., Aguilar, M. I., Martin, L. L., Small, D. H., Beta-Amyloid protein oligomers induced by metal ions and acid pH are distinct from those generated by slow spontaneous ageing at neutral pH (2003) Eur. J. Biochem, 270, pp. 4282-4293
Engel, M. F., Khemtemourian, L., Kleijer, C. C., Meeldijk, H. J., Jacobs, J., Verkleij, A. J., de Kruijff, B., Hoppener, J. W., Membrane damage by human islet amyloid polypeptide through fibril growth at the membrane (2008) Proc. Natl. Acad. Sci. USA, 105, pp. 6033-6038
Garcia-Saez, A. J., Chiantia, S., Salgado, J., Schwille, P., Pore formation by a bax-derived peptide: Effect on the line tension of the membrane probed by AFM (2007) Biophys. J, 93, pp. 103-112
Faucon, J. F., Bonmatin, J. M., Dufourcq, J., Dufourc, E. J., Acyl chain length dependence in the stability of melittin-phosphatidylcholine complexes. A light scattering and 31P-NMR study (1995) Biochim. Biophys. Acta, 1234, pp. 235-243
Sani, M. A., Loudet, C., Grobner, G., Dufourc, E. J., Pro-apoptotic bax-alpha1 synthesis and evidence for beta-sheet to alpha-helix conformational change as triggered by negatively charged lipid membranes (2007) J. Pept. Sci, 13, pp. 100-106
Frey, S., Tamm, L. K., Orientation of melittin in phospholipid bilayers. A polarized attenuated total reflection infrared study (1991) Biophys. J, 60, pp. 922-930
Resende, J. M., Moraes, C. M., Munhoz, V. H., Aisenbrey, C., Verly, R. M., Bertani, P., Cesar, A., Bechinger, B., Membrane structure and conformational changes of the antibiotic heterodimeric peptide distinctin by solid-state NMR spectroscopy (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 16639-16644
Biggin, P. C., Sansom, M. S., Interactions of alpha-helices with lipid bilayers: A review of simulation studies (1999) Biophys. Chem, 76, pp. 161-183
Karle, I. L., Perozzo, M. A., Mishra, V. K., Balaram, P., Crystal structure of the channel-forming polypeptide antiamoebin in a membrane-mimetic environment (1998) Proc. Natl. Acad. Sci. USA, 95, pp. 5501-5504
Rankenberg, J. M., Vostrikov, V. V., Greathouse, D. V., Grant, C. V., Opella, S. J., Koeppe II, R. E., Properties of membrane-incorporated WALP peptides that are anchored on only one end (2012) Biochemistry, 51, pp. 10066-10074
Park, S. H., de Angelis, A. A., Nevzorov, A. A., Wu, C. H., Opella, S. J., Three-dimensional structure of the transmembrane domain of Vpu from HIV-1 in aligned phospholipid bicelles (2006) Biophys. J, 91, pp. 3032-3042
D'Ursi, A. M., Armenante, M. R., Guerrini, R., Salvadori, S., Sorrentino, G., Picone, D., Solution structure of amyloid beta-peptide (25-35) in different media (2004) J. Med. Chem, 47, pp. 4231-4238
Warschawski, D. E., Arnold, A. A., Beaugrand, M., Gravel, A., Chartrand, E., Marcotte, I., Choosing membrane mimetics for NMR structural studies of transmembrane proteins (2011) Biochim. Biophys. Acta, 1808, pp. 1957-1974
Kallick, D. A., Tessmer, M. R., Watts, C. R., Li, C. Y., The use of dodecylphosphocholine micelles in solution NMR (1995) J. Magn. Reson. B, 109, pp. 60-65
Keifer, P. A., Peterkofsky, A., Wang, G., Effects of detergent alkyl chain length and chemical structure on the properties of a micelle-bound bacterial membrane targeting peptide (2004) Anal. Biochem, 331, pp. 33-39
Prosser, R. S., Evanics, F., Kitevski, J. L., Al-Abdul-Wahid, M. S., Current applications of bicelles in NMR studies of membrane-associated amphiphiles and proteins (2006) Biochemistry, 45, pp. 8453-8465
Tamm, L. K., Abildgaard, F., Arora, A., Blad, H., Bushweller, J. H., Structure, dynamics and function of the outer membrane protein A (OmpA) and influenza hemagglutinin fusion domain in detergent micelles by solution NMR (2003) FEBS Lett, 555, pp. 139-143
Shenkarev, Z. O., Balashova, T. A., Efremov, R. G., Yakimenko, Z. A., Ovchinnikova, T. V., Raap, J., Arseniev, A. S., Spatial structure of zervamicin IIB bound to DPC micelles: Implications for voltage-gating (2002) Biophys. J, 82, pp. 762-771
Gao, X., Wong, T. C., Studies of the binding and structure of adrenocorticotropin peptides in membrane mimics by NMR spectroscopy and pulsed-field gradient diffusion (1998) Biophys. J, 74, pp. 1871-1888
Brown, L. R., Bosch, C., Wuthrich, K., Location and orientation relative to the micelle surface for glucagon in mixed micelles with dodecylphosphocholine: EPR and NMR studies (1981) Biochim. Biophys. Acta, 642, pp. 296-312
Prosser, R. S., Luchette, P. A., Westerman, P. W., Using O2 to probe membrane immersion depth by 19F NMR (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 9967-9971
Laws, D. D., Bitter, H. M., Jerschow, A., Solid-state NMR spectroscopic methods in chemistry (2002) Angew. Chem. Int. Ed. Engl, 41, pp. 3096-3129
Inbaraj, J. J., Cardon, T. B., Laryukhin, M., Grosser, S. M., Lorigan, G. A., Determining the topology of integral membrane peptides using EPR spectroscopy (2006) J. Am. Chem. Soc, 128, pp. 9549-9554
Inbaraj, J. J., Laryukhin, M., Lorigan, G. A., Determining the helical tilt angle of a transmembrane helix in mechanically aligned lipid bilayers using EPR spectroscopy (2007) J. Am. Chem. Soc, 129, pp. 7710-7711
Mayo, D. J., Inbaraj, J. J., Subbaraman, N., Grosser, S. M., Chan, C. A., Lorigan, G. A., Comparing the structural topology of integral and peripheral membrane proteins utilizing electron paramagnetic resonance spectroscopy (2008) J. Am. Chem. Soc, 130, pp. 9656-9657
Im, W., Lee, M. S., Brooks III, C. L., Generalized born model with a simple smoothing function (2003) J. Comput. Chem, 24, pp. 1691-1702
Ulmschneider, M. B., Sansom, M. S., di Nola, A., Properties of integral membrane protein structures: Derivation of an implicit membrane potential (2005) Proteins, 59, pp. 252-265
Herce, H. D., Garcia, A. E., Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 TAT peptide across lipid membranes (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 20805-20810
Marrink, S. J., Risselada, H. J., Yefimov, S., Tieleman, D. P., de Vries, A. H., The MARTINI force field: Coarse grained model for biomolecular simulations (2007) J. Phys. Chem. B, 111, pp. 7812-7824
Bond, P. J., Sansom, M. S., Insertion and assembly of membrane proteins via simulation (2006) J. Am. Chem. Soc, 128, pp. 2697-2704
Bond, P. J., Parton, D. L., Clark, J. F., Sansom, M. S., Coarse-grained simulations of the membrane-active antimicrobial Peptide maculatin 1. 1 (2008) Biophys. J, 95, pp. 3802-3815
Bond, P. J., Holyoake, J., Ivetac, A., Khalid, S., Sansom, M. S., Coarse-grained molecular dynamics simulations of membrane proteins and peptides (2007) J. Struct. Biol, 157, pp. 593-605
Risselada, H. J., Marrink, S. J., Curvature effects on lipid packing and dynamics in liposomes revealed by coarse grained molecular dynamics simulations (2009) Phys. Chem. Chem. Phys, 11, pp. 2056-2067
Ladokhin, A. S., Jayasinghe, S., White, S. H., How to measure and analyze tryptophan fluorescence in membranes properly, and why bother? (2000) Anal. Biochem, 285, pp. 235-245
de Kroon, A. I., Soekarjo, M. W., de Gier, J., de Kruijff, B., The role of charge and hydrophobicity in peptide-lipid interaction: A comparative study based on tryptophan fluorescence measurements combined with the use of aqueous and hydrophobic quenchers (1990) Biochemistry, 29, pp. 8229-8240
Esbjorner, E. K., Oglecka, K., Lincoln, P., Graslund, A., Norden, B., Membrane binding of pH-sensitive influenza fusion peptides. Positioning, configuration, and induced leakage in a lipid vesicle model (2007) Biochemistry, 46, pp. 13490-13504
Moreno, M. R., Perez-Berna, A. J., Guillen, J., Villalain, J., Biophysical characterization and membrane interaction of the most membranotropic region of the HIV-1 gp41 endodomain (2008) Biochim. Biophys. Acta, 1778, pp. 1298-1307
Reshetnyak, Y. K., Segala, M., Andreev, O. A., Engelman, D. M., A monomeric membrane peptide that lives in three worlds: In solution, attached to, and inserted across lipid bilayers (2007) Biophys. J, 93, pp. 2363-2372
Stahelin, R. V., Burian, A., Bruzik, K. S., Murray, D., Cho, W., Membrane binding mechanisms of the PX domains of NADPH oxidase p40phox and p47phox (2003) J. Biol. Chem, 278, pp. 14469-14479
Thomas, C. J., Surolia, N., Surolia, A., Surface plasmon resonance studies resolve the enigmatic endotoxin neutralizing activity of polymyxin B (1999) J. Biol. Chem, 274, pp. 29624-29627
Kremer, J. J., Murphy, R. M., Kinetics of adsorption of beta-amyloid peptide Abeta (1-40) to lipid bilayers (2003) J. Biochem. Biophys. Methods, 57, pp. 159-169
Myszka, D. G., Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors (1997) Curr. Opin. Biotechnol, 8, pp. 50-57
Prenner, E. J., Lewis, R. N. A. H., Kondejewski, L. H., Hodges, R. S., McElhaney, R. N., Differential scanning calorimetric study of the effect of the antimicrobial peptide gramicidin S on the thermotropic phase behavior of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol lipid bilayer membranes (1999) Biochim. Biophys. Acta, 1417, pp. 211-223
Woody, R. W., Circular dichroism (1995) Methods Enzymol, 246, pp. 34-71
Wallace, B. A., Lees, J. G., Orry, A. J., Lobley, A., Janes, R. W., Analyses of circular dichroism spectra of membrane proteins (2003) Protein Sci, 12, pp. 875-884
Wu, Y., Huang, H. W., Olah, G. A., Method of oriented circular dichroism (1990) Biophys. J, 57, pp. 797-806
Nielsen, S. B., Otzen, D. E., Impact of the antimicrobial peptide Novicidin on membrane structure and integrity (2010) J. Colloid Interface Sci, 345, pp. 248-256
Cheng, J. T., Hale, J. D., Elliot, M., Hancock, R. E., Straus, S. K., Effect of membrane composition on antimicrobial peptides aurein 2. 2 and 2. 3 from Australian southern bell frogs (2009) Biophys. J, 96, pp. 552-565
Alves, I. D., Jiao, C. Y., Aubry, S., Aussedat, B., Burlina, F., Chassaing, G., Sagan, S., Cell biology meets biophysics to unveil the different mechanisms of penetratin internalization in cells (2010) Biochim. Biophys. Acta, 1798, pp. 2231-2239
Macewan, S. R., Chilkoti, A., Harnessing the power of cell-penetrating peptides: Activatable carriers for targeting systemic delivery of cancer therapeutics and imaging agents (2013) Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol, 5, pp. 31-48
Funhoff, A. M., van Nostrum, C. F., Lok, M. C., Fretz, M. M., Crommelin, D. J., Hennink, W. E., Poly (3-guanidinopropyl methacrylate): A novel cationic polymer for gene delivery (2004) Bioconjug. Chem, 15, pp. 1212-1220
Jiang, X., Lok, M. C., Hennink, W. E., Degradable-brushed pHEMA-pDMAEMA synthesized via ATRP and click chemistry for gene delivery (2007) Bioconjug. Chem, 18, pp. 2077-2084
Fretz, M. M., Mastrobattista, E., Koning, G. A., Jiskoot, W., Storm, G., Strategies for cytosolic delivery of liposomal macromolecules (2005) Int. J. Pharm, 298, pp. 305-309
Carberry, T. P., Tarallo, R., Falanga, A., Finamore, E., Galdiero, M., Weck, M., Galdiero, S., Dendrimer functionalization with a membrane-interacting domain of herpes simplex virus type 1: Towards intracellular delivery (2012) Chemistry, 18, pp. 13678-13685
Tjernberg, L. O., Naslund, J., Lindqvist, F., Johansson, J., Karlstrom, A. R., Thyberg, J., Terenius, L., Nordstedt, C., Arrest of beta-amyloid fibril formation by a pentapeptide ligand (1996) J. Biol. Chem, 271, pp. 8545-8548
Peptide-Lipid Interactions: Experiments and Applications
The interactions between peptides and lipids are of fundamental importance in the functioning of numerous membrane-mediated cellular processes including antimicrobial peptide action, hormone-receptor interactions, drug bioavailability across the blood-brain barrier and viral fusion processes. Moreover, a major goal of modern biotechnology is obtaining new potent pharmaceutical agents whose biological action is dependent on the binding of peptides to lipid-bilayers. Several issues need to be addressed such as secondary structure, orientation, oligomerization and localization inside the membrane. At the same time, the structural effects which the peptides cause on the lipid bilayer are important for the interactions and need to be elucidated. The structural characterization of membrane active peptides in membranes is a harsh experimental challenge. It is in fact accepted that no single experimental technique can give a complete structural picture of the interaction, but rather a combination of different techniques is necessary.
Peptide-Lipid Interactions: Experiments and Applications
Vitiello M, Finamore E, Falanga A, Raieta K, Cantisani M, Galdiero F, Pedone C, Galdiero M, Galdiero S * Fusion in Coq(481 views) Lecture Notes In Computer Science (ISSN: 0302-9743, 0302-974335404636319783540463634, 0302-974335402975459783540297543), 2001; 2178LNCS: 583-596. Impact Factor:0.415 ViewExport to BibTeXExport to EndNote