Structure and Orientation of the gH625-644 Membrane Interacting Region of Herpes Simplex Virus Type 1 in a Membrane Mimetic System(368 views) Galdiero S, Russo L, Falanga A, Cantisani M, Vitiello M, Fattorusso R, Malgieri G, Galdiero M, Isernia C
Keywords: Complex Mechanisms, Ectodomain, Herpes Simplex Virus Type 1, Host Cells, Membrane Fusion, Micellar Environment, Solution Structures, Structure And Orientation, Amino Acids, Biomimetics, Cell Membranes, Glycoproteins, Dodecylphosphorylcholine, Membrane Protein, Unclassified Drug, Article, Crystal Structure, Heteronuclear Single Quantum Coherence, Mutation, Nonhuman, Priority Journal, Protein Domain, Protein Structure, Proton Nuclear Magnetic Resonance, Virus Envelope, Herpesvirus 1, Biomolecular, Peptides, Protein Conformation, Structure-Activity Relationship, Viral Envelope Proteins, Human Herpesvirus 1,
Affiliations: *** IBB - CNR ***
Department of Biological Sciences, Division of Biostructures, University of Naples Federico II, Napoli, Italy
Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples Federico II, Napoli, Italy
Istituto di Biostrutture e Bioimmagini, CNR, Napoli, Italy
Department of Environmental Sciences, Second University of Naples, Caserta, Italy
Department of Experimental Medicine, Second University of Naples, Napoli, Italy
Campadelli-Fiume, G., Amasio, M., Avitabile, E., Cerretani, A., Forghieri, C., Gianni, T., Menotti, L., The multipartite system that mediates entry of herpes simplex virus into the cell (2007) Rev. Med. Virol., 17, pp. 313-326
Spear, P.G., Longnecker, R., Herpesvirus entry: An update (2003) J. Virol., 77, pp. 10179-10185
Turner, A., Bruun, B., Minson, T., Browne, H., Glycoproteins gB, gD, and gHgL of herpes simplex virus type 1 are necessary and sufficient to mediate membrane fusion in a Cos cell transfection system (1998) J. Virol., 72, pp. 873-875
Shukla, D., Spear, P.G., Herpesviruses and heparan sulfate: An intimate relationship in aid of viral entry (2001) J. Clin. Invest., 108, pp. 503-510
Jackson, J.O., Longnecker, R., Reevaluating herpes simplex virus hemifusion (2010) J. Virol., 84, pp. 11814-11821
Heldwein, E.E., Lou, H., Bender, F.C., Cohen, G.H., Eisenberg, R.J., Harrison, S.C., Crystal structure of glycoprotein B from herpes simplex virus 1 (2006) Science, 313, pp. 217-220
Galdiero, M., Whiteley, A., Bruun, B., Bell, S., Minson, T., Browne, H., Site-directed and linker insertion mutagenesis of herpes simplex virus type 1 glycoprotein H (1997) J. Virol., 71, pp. 2163-2170
Galdiero, S., Falanga, A., Vitiello, M., Raiola, L., Fattorusso, R., Browne, H., Pedone, C., Galdiero, M., Analysis of a membrane interacting region of herpes simplex virus type 1 glycoprotein H (2008) J. Biol. Chem., 283, pp. 29993-30009
Chowdary, T.K., Cairns, T.M., Atanasiu, D., Cohen, G.H., Eisenberg, R.J., Heldwein, E.E., Crystal structure of the conserved herpesvirus fusion regulator complex gH-GL (2010) Nat. Struct. Mol. Biol., 17, pp. 882-888
Atanasiu, D., Whitbeck, J.C., De Leon, M.P., Lou, H., Hannah, B.P., Cohen, G.H., Eisenberg, R.J., Bimolecular complementation defines functional regions of Herpes simplex virus gB that are involved with gH/gL as a necessary step leading to cell fusion (2010) J. Virol., 84, pp. 3825-3834
Tarallo, R., Accardo, A., Falanga, A., Guarnieri, D., Vitiello, G., Netti, P., D'Errico, G., Galdiero, S., Clickable Functionalization of Liposomes with the gH625 Peptide from Herpes simplex Virus Type i for Intracellular Drug Delivery (2011) Chem.-Eur. J., 17, pp. 12659-12668
Le Maire, M., Champeil, P., Møller, J.V., Interaction of membrane proteins and lipids with solubilizing detergents (2000) Biochim. Biophys. Acta, 1508, pp. 86-111
Griesinger, C., Otting, G., Wüthrich, K., Ernst, R.R., Clean TOCSY for 1H spin system identification in macromolecules (1988) J. Am. Chem. Soc., 110, pp. 7870-7872
Kumar, A., Ernst, R.R., Wüthrich, K., A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules (1980) Biochem. Biophys. Res. Commun., 95, pp. 1-6
Hwang, T.L., Shaka, J., Water Suppression That Works. Excitation Sculpting Using Arbitrary Wave-Forms and Pulsed-Field Gradients (1995) J. Magn. Reson., Ser. A, 112, pp. 275-279
Keller, R., (2004) The Computer Aided Resonance Assignment Tutorial, , CANTINA Verlag Goldau
Güntert, P., Automated NMR structure calculation with CYANA (2004) Methods Mol. Biol., 278, pp. 353-378
Herrmann, T., Güntert, P., Wüthrich, K., Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA (2002) J. Mol. Biol., 319, pp. 209-227
Guex, N., Peitsch, M.C., SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling (1997) Electrophoresis, 18, pp. 2714-2723
Koradi, R., Billeter, M., Wüthrich, K., MOLMOL: A program for display and analysis of macromolecular structures (1996) J. Mol. Graphics, 14, pp. 29-32
Laskowski, R.A., Rullmann, J.A., MacArthur, M.W., Kaptein, R., Thornton, J.M., AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR (1996) J. Biomol. NMR, 8, pp. 477-486
Gibbs, S.J., Johnson, Jr.C.S., A PFG NMR experiment for accurate diffusion and flow studies in the presence of eddy currents (1991) J. Magn. Reson., 93, pp. 395-402
Wilkins, D.K., Grimshaw, S.B., Receveur, V., Dobson, C.M., Jones, J.A., Smith, L.J., Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques (1999) Biochemistry, 38, pp. 16424-16431
De La Torre, J.G., Huertas, M.L., Carrasco, B., Calculation of Hydrodynamic Properties of Globular Proteins from Their Atomic-Level Structure (2000) Biophys. J., 78, pp. 719-730
Bolen, E.J., Holloway, P.W., Quenching of tryptophan fluorescence by brominated phospholipid (1990) Biochemistry, 29, pp. 9638-9643
De Kroon, A.I., Soekarjo, M.W., De Gier, J., De Kruijff, B., The role of charge and hydrophobicity in peptide-lipid interaction: A comparative study based on tryptophan fluorescence measurements combined with the use of aqueous and hydrophobic quenchers (1990) Biochemistry, 29, pp. 8229-8240
Sims, P.J., Waggoner, A.S., Wang, C.H., Hoffman, J.R., Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles (1974) Biochemistry, 13, pp. 3315-3330
Shai, Y., Bach, D., Yanovsky, A., Channel formation properties of synthetic pardaxin and analogues (1990) J. Biol. Chem., 265, pp. 20202-20209
Groves, P., Rasmussen, M.O., Molero, M.D., Samain, E., Cañada, F.J., Driguez, H., Jimenez-Barbero, J., Diffusion ordered spectroscopy as a complement to size exclusion chromatography in oligosaccharide analysis (2004) Glycobiology, 14, pp. 451-456
Shenkarev, Z.O., Balashova, T.A., Efremov, R.G., Yakimenko, Z.A., Ovchinnikova, T.V., Raap, J., Spatial structure of Zervamicin IIB bound to DPC micelles: Implications for voltage-gating (2002) Biophys. J., 82, pp. 762-771
Gao, X., Wong, T.C., Studies of the binding and structure of adrenocorticotropin peptides in membrane mimics by NMR spectroscopy and pulsed-field gradient diffusion (1998) Biophys. J., 74, pp. 1871-1888
Opella, S.J., Kim, Y., McDonnell, P., Experimental nuclear magnetic resonance studies of membrane proteins (1994) Methods Enzymol., 239, pp. 536-560
Pervushin, K.V., Arseniev, A.S., NMR spectroscopy in the study of the spatial structure of membrane peptides and proteins (1995) Bioorg. Khim., 21, pp. 83-111
Ben-Tal, N., Ben-Shaul, A., Nicholls, A., Honig, B., Free-energy determinants of alpha-helix insertion into lipid bilayers (1996) Biophys. J., 70, pp. 1803-1812
Chipot, C., Pohorille, A., Folding and translocation of the undecamer of poly-L-leucine across the water-hexane interface. A molecular dynamics study (1998) J. Am. Chem. Soc., 120, pp. 11912-11924
Zhang, W., Crocker, E., McLaughlin, S., Smith, S.O., Binding of peptides with basic and aromatic residues to bilayer membranes: Phenylalanine in the myristoylated alanine-rich C kinase substrate effector domain penetrates into the hydrophobic core of the bilayer (2003) J. Biol. Chem., 278, pp. 21459-21466
Jing, W., Hunter, H.N., Hagel, J., Vogel, H.J., The structure of the antimicrobial peptide Ac-RRWWRF-NH2 bound to micelles and its interactions with phospholipid bilayers (2003) J. Pept. Res., 61, pp. 219-229
Rauch, M.E., Ferguson, C.G., Prestwich, G.D., Cafiso, D.S., Myristoylated alanine-rich C kinase substrate (MARCKS) sequesters spin-labeled phosphatidylinositol 4,5-bisphosphate in lipid bilayers (2002) J. Biol. Chem., 277, pp. 14068-14076
Harrison, S. C., Viral membrane fusion (2008) Nat. Struct. Mol. Biol., 15, pp. 690-69
Spear, P. G., Longnecker, R., Herpesvirus entry: An update (2003) J. Virol., 77, pp. 10179-10185
Jackson, J. O., Longnecker, R., Reevaluating herpes simplex virus hemifusion (2010) J. Virol., 84, pp. 11814-11821
Heldwein, E. E., Lou, H., Bender, F. C., Cohen, G. H., Eisenberg, R. J., Harrison, S. C., Crystal structure of glycoprotein B from herpes simplex virus 1 (2006) Science, 313, pp. 217-220
Chowdary, T. K., Cairns, T. M., Atanasiu, D., Cohen, G. H., Eisenberg, R. J., Heldwein, E. E., Crystal structure of the conserved herpesvirus fusion regulator complex gH-GL (2010) Nat. Struct. Mol. Biol., 17, pp. 882-888
Hwang, T. L., Shaka, J., Water Suppression That Works. Excitation Sculpting Using Arbitrary Wave-Forms and Pulsed-Field Gradients (1995) J. Magn. Reson., Ser. A, 112, pp. 275-279
G ntert, P., Automated NMR structure calculation with CYANA (2004) Methods Mol. Biol., 278, pp. 353-378
Herrmann, T., G ntert, P., W thrich, K., Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA (2002) J. Mol. Biol., 319, pp. 209-227
Laskowski, R. A., Rullmann, J. A., MacArthur, M. W., Kaptein, R., Thornton, J. M., AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR (1996) J. Biomol. NMR, 8, pp. 477-486
Gibbs, S. J., Johnson, Jr. C. S., A PFG NMR experiment for accurate diffusion and flow studies in the presence of eddy currents (1991) J. Magn. Reson., 93, pp. 395-402
Wilkins, D. K., Grimshaw, S. B., Receveur, V., Dobson, C. M., Jones, J. A., Smith, L. J., Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques (1999) Biochemistry, 38, pp. 16424-16431
De La Torre, J. G., Huertas, M. L., Carrasco, B., Calculation of Hydrodynamic Properties of Globular Proteins from Their Atomic-Level Structure (2000) Biophys. J., 78, pp. 719-730
Bolen, E. J., Holloway, P. W., Quenching of tryptophan fluorescence by brominated phospholipid (1990) Biochemistry, 29, pp. 9638-9643
De Kroon, A. I., Soekarjo, M. W., De Gier, J., De Kruijff, B., The role of charge and hydrophobicity in peptide-lipid interaction: A comparative study based on tryptophan fluorescence measurements combined with the use of aqueous and hydrophobic quenchers (1990) Biochemistry, 29, pp. 8229-8240
Sims, P. J., Waggoner, A. S., Wang, C. H., Hoffman, J. R., Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles (1974) Biochemistry, 13, pp. 3315-3330
Shenkarev, Z. O., Balashova, T. A., Efremov, R. G., Yakimenko, Z. A., Ovchinnikova, T. V., Raap, J., Spatial structure of Zervamicin IIB bound to DPC micelles: Implications for voltage-gating (2002) Biophys. J., 82, pp. 762-771
Gao, X., Wong, T. C., Studies of the binding and structure of adrenocorticotropin peptides in membrane mimics by NMR spectroscopy and pulsed-field gradient diffusion (1998) Biophys. J., 74, pp. 1871-1888
Opella, S. J., Kim, Y., McDonnell, P., Experimental nuclear magnetic resonance studies of membrane proteins (1994) Methods Enzymol., 239, pp. 536-560
Pervushin, K. V., Arseniev, A. S., NMR spectroscopy in the study of the spatial structure of membrane peptides and proteins (1995) Bioorg. Khim., 21, pp. 83-111
Rauch, M. E., Ferguson, C. G., Prestwich, G. D., Cafiso, D. S., Myristoylated alanine-rich C kinase substrate (MARCKS) sequesters spin-labeled phosphatidylinositol 4, 5-bisphosphate in lipid bilayers (2002) J. Biol. Chem., 277, pp. 14068-14076
Structure and Orientation of the gH625-644 Membrane Interacting Region of Herpes Simplex Virus Type 1 in a Membrane Mimetic System
Glycoprotein H (gH) of the herpes simplex virus type 1 is involved in the complex mechanism of membrane fusion of the viral envelope with host cells. The virus requires four glycoproteins (gB, gD, gH, gL) to execute fusion and the role played by gH remains mysterious. Mutational studies have revealed several regions of gH ectodomain required for fusion and identified the segment from amino acid 625 to 644 as the most fusogenic region. Here, we studied the behavior in a membrane-mimicking DPC micellar environment of a peptide encompassing this region (gH625-644) and determined its NMR solution structure and its orientation within the micelles.
Structure and Orientation of the gH625-644 Membrane Interacting Region of Herpes Simplex Virus Type 1 in a Membrane Mimetic System
No results.
Structure and Orientation of the gH625-644 Membrane Interacting Region of Herpes Simplex Virus Type 1 in a Membrane Mimetic System