Biophysical Characterization and Membrane Interaction of the Two Fusion Loops of Glycoprotein B from Herpes Simplex Type I Virus(526 views) Falanga A, Tarallo R, Vitiello G, Vitiello M, Perillo E, Cantisani M, D'Errico G, Galdiero M, Galdiero S
Plosone (ISSN: 1932-6203, 1932-6203electronic, 1932-6203linking), 2012 Feb 23; 7(2): N/D-N/D.
Keywords: Glycoprotein B, Peptide, Acrylamide, Simplexvirus, Lipid, Tryptophan, Tyrosine, Virus Envelope Protein, Article, Controlled Study, Herpes Simplex Virus 1, Hydrophobicity, Lipid Bilayer, Membrane Binding, Nonhuman, Protein Domain, Biophysics, Chemistry, Metabolism, Methodology, Protein Motif, Protein Secondary Structure, Spectrofluorometry, X Ray Crystallography, Herpesviridae, Human Herpesvirus 1, Amino Acid Motifs, X-Ray, Protein Structure, Spectrometry, Fluorescence, Viral Envelope Proteins,
Affiliations: *** IBB - CNR ***
Division of Biostructures, Department of Biological Sciences, University of Naples Federico II, Napoli, Italy
Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples Federico II, Napoli, Italy
Department of Chemistry, University of Naples Federico II, Consorzio per lo Studio dei Sistemi a Grande Interfase, CSGI, Monte Sant'Angelo, Napoli, Italy
Department of Experimental Medicine, II University of Naples, Napoli, Italy
Istituto di Biostrutture e Bioimmagini, CNR, Napoli, Italy
References: Falanga, A., Cantisani, M., Pedone, C., Galdiero, S., Membrane fusion and fission: enveloped viruses (2009) Prot Pept Lett, 16, pp. 751-75
Galdiero, S., Developments in membrane fusion (2009) Prot Pept Lett, 16, p. 711
Chernomordik, L.V., Kozlov, M.M., Protein-lipid interplay in fusion and fission of biological membranes (2003) Annu Rev Biochem, 72, pp. 175-207
Drin, G., Casella, J.F., Gautier, R., Boehmer, T., Schwartz, T.U., A general amphipathic alpha-helical motif for sensing membrane curvature (2007) Nat Struct Mol Biol, 14, pp. 138-146
Antonny, B., Mechanisms of membrane curvature sensing (2011) Annu Rev Biochem, 80, pp. 101-123
Connolly, S.A., Jackson, J.O., Jardetzky, T.S., Longnecker, R., Fusing structure and function: a structural view of the herpesvirus entry machinery (2011) Nat Rev Microbiol, 9, pp. 369-381
Turner, A., Bruun, B., Minson, T., Browne, H., Glycoproteins gB, gD, and gHgL of herpes simplex virus type 1 are necessary and sufficient to mediate membrane fusion in a Cos cell transfection system (1998) J Virol, 72, pp. 873-875
Farnsworth, A., Wisner, T.W., Webb, M., Roller, R., Cohen, G., Herpes simplex virus glycoproteins gB and gH function in fusion between the virion envelope and the outer nuclear membrane (2007) Proc Natl Acad Sci U S A, 104, pp. 10187-10192
Atanasiu, D., Whitbeck, J.C., Cairns, T.M., Reilly, B., Cohen, G.H., Bimolecular complementation reveals that glycoproteins gB and gH/gL of herpes simplex virus interact with each other during cell fusion (2007) Proc Natl Acad Sci U S A, 104, pp. 18718-18723
Avitabile, E., Forghieri, C., Campadelli-Fiume, G., Complexes between herpes simplex virus glycoproteins gD, gB, and gH detected in cells by complementation of split enhanced green fluorescent protein (2007) J Virol, 81, pp. 11532-11537
Galdiero, S., Vitiello, M., D'Isanto, M., Falanga, A., Collins, C., Analysis of synthetic peptides from heptad-repeat domains of herpes simplex virus type 1 glycoproteins H and B (2006) J Gen Virol, 87, pp. 1085-1097
Galdiero, S., Falanga, A., Vitiello, M., Browne, H., Pedone, C., Fusogenic domains in herpes simplex virus type 1 glycoprotein H (2005) J Biol Chem, 280, pp. 28632-28643
Chowdary, T.K., Cairns, T.M., Atanasiu, D., Cohen, G.H., Eisenberg, R.J., Crystal structure of the conserved herpesvirus fusion regulator complex gH-gL (2010) Nat Struct Mol Biol, 17, pp. 882-888
Matsuura, H., Kirschner, A.N., Longnecker, R., Jardetzky, T.S., Crystal structure of the Epstein-Barr virus (EBV) glycoprotein H/glycoprotein L (gH/gL) complex (2010) Proc Natl Acad Sci U S A, 107, pp. 22641-22646
Heldwein, E.E., Lou, H., Bender, F.C., Cohen, G.H., Eisenberg, R.J., Crystal structure of glycoprotein B from herpes simplex virus 1 (2006) Science, 313, pp. 217-220
Backovic, M., Longnecker, R., Jardetzky, T.S., Structure of a trimeric variant of the Epstein-Barr virus glycoprotein B (2009) Proc Natl Acad Sci U S A, 106, pp. 2880-2885
Roche, S., Bressanelli, S., Rey, F.A., Gaudin, Y., Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G (2006) Science, 313, pp. 187-191
Kadlec, J., Loureiro, S., Abrescia, N.G., Stuart, D.I., Jones, I.M., The postfusion structure of baculovirus gp64 supports a unified view of viral fusion machines (2008) Nat Struct Mol Biol, 15, pp. 1024-1030
Akkarawongsa, R., Pocaro, N.E., Case, G., Kolb, A.W., Brandt, C.R., Multiple peptides homologous to herpes simplex virus type 1 glycoprotein B inhibit viral infection (2009) Antimicrob Agents Chem, 53, pp. 987-996
Hannah, B.P., Heldwein, E.E., Bender, F.C., Cohen, G.H., Eisenberg, R.J., Mutational evidence of internal fusion loops in herpes simplex virus glycoprotein B (2007) J Virol, 81, pp. 4858-4865
Roche, S., Albertini, A.A., Lepault, J., Bressanelli, S., Gaudin, Y., Structures of vesicular stomatitis virus glycoprotein: membrane fusion revisited (2008) Cell Mol Life Sci, 65, pp. 1716-1728
Sun, X., Belouzard, S., Whittaker, G.R., Molecular architecture of the bipartite fusion loops of vesicular stomatitis virus glycoprotein G, a class III viral fusion protein (2008) J Biol Chem, 283, pp. 6418-6427
Vitiello, G., Falanga, A., Galdiero, M., Marsh, D., Galdiero, S., Lipid composition modulates the interaction of peptides deriving from herpes simplex virus type I glycoproteins B and H with biomembranes (2011) Biochim Biophys Acta, 1808, pp. 1526-2517
Bender, F.C., Whitbeck, J.C., Ponce de Leon, M., Lou, H., Eisenberg, R.J., Specific association of glycoprotein B with lipid rafts during herpes simplex virus entry (2003) J Virol, 77, pp. 9542-9552
de Almeida, R.F.M., Fedorov, A., Prieto, M., Sphingomyelin/Phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts (2003) Biophys J, 85, pp. 2406-2416
Ellens, H., Bentz, J., Szoka Jr., F.C., pH-induced destabilization of phosphatidylethanolamine-containing liposomes: role of bilayer contact (1984) Biochemistry, 23, pp. 1532-1538
Parente, R.A., Nir, S., Szoka Jr., F.C., Mechanism of leakage of phospholipid vesicle contents induced by the peptide GALA (1990) Biochemistry, 29, pp. 8713-8719
Levine III., H., Thioflavine T interaction with synthetic Alzheimer's disease β-amyloid peptides: Detection of amyloid aggregation in solution (1993) Prot Sci, 2, pp. 404-410
Yau, W.M., Wimley, W.C., Gawrisch, K., White, S.H., The preference of tryptophan for membrane interfaces (1998) Biochemistry, 37, pp. 14713-14718
Gordon, L.M., Curtain, C.C., Zhong, Y.C., Kirkpatrick, A., Mobley, P.W., The amino-terminal peptide of HIV-1 glycoprotein 41 interacts with human erythrocyte membranes: peptide conformation, orientation and aggregation (1992) Biochim Biophys Acta, 1139, pp. 257-274
Curtain, C., Separovic, F., Nielsen, K., Craik, D., Zhong, Y., The interactions of the N-terminal fusogenic peptide of HIV-1 gp41 with neutral phospholipids (1999) European Biophysical Journal, 28, pp. 427-436
D'Errico, G., D'Ursi, A.M., Marsh, D., Interaction of a peptide derived from glycoprotein gp36 of feline immunodeficiency virus and its lipoylated analogue with phospholipid membranes (2008) Biochemistry, 47, pp. 5317-5327
Spadaccini, R., D'Errico, G., D'Alessio, V., Notomista, E., Bianchi, A., Structural characterization of the transmembrane proximal region of the hepatitis C virus E1 glycoprotein (2010) Biochim Biophys Acta, 1798, pp. 344-353
Marsh, D., Liquid-ordered phases induced by cholesterol: a compendium of binary phase diagrams (2010) Biochim Biophys Acta, 1798, pp. 688-699
Swamy, M.J., Marsh, D., Spin-label electron spin resonance studies on the dynamics of the different phases of N-biotinylphosphatidylethanolamines (1994) Biochemistry, 33, pp. 11656-11663
Moser, M., Marsh, D., Meier, P., Wassmer, K.H., Kothe, G., Chain configuration and flexibility gradient in phospholipid membranes. Comparison between spin-label electron spin resonance and deuteron nuclear magnetic resonance, and identification of new conformations (1989) Biophys J, 55, pp. 111-123
Rama Krishna, Y.V.S., Marsh, D., Spin label ESR and 31P-NMR studies of the cubic and inverted hexagonal phases of dimyristoylphosphatidylcholine/myristic acid (1:2, mol/mol) mixtures (1990) Biochim Biophys Acta, 1024, pp. 89-94
Lange, A., Marsh, D., Wassmer, K.H., Meier, P., Kothe, G., Electron spin resonance study of phospholipid membranes employing a comprehensive line-shape model (1985) Biochemistry, 24, pp. 4383-4392
D'Errico, G., Vitiello, G., Ortona, O., Tedeschi, A., Ramunno, A., Interaction between Alzheimer's Abeta(25-35) peptide and phospholipid bilayers: the role of cholesterol (2008) Biochim Biophys Acta, 1778, pp. 2710-2716
Hannah, B.P., Cairns, T.M., Bender, F.C., Whitbeck, J.C., Lou, H., Herpes simplex virus glycoprotein B associates with target membranes via its fusion loops (2009) J Virol, 83, pp. 6825-6836
Ahn, A., Gibbons, D.L., Kielian, M., The fusion peptide of Semliki Forest virus associates with sterol-rich membrane domains (2002) J Virol, 76, pp. 3267-3275
Chatterjee, P.K., Eng, C.H., Kielian, M., Novel mutations that control the sphingolipid and cholesterol dependence of the Semliki Forest virus fusion protein (2002) J Virol, 76, pp. 12712-12722
Vashishtha, M., Phalen, T., Marquardt, M.T., Ryu, J.S., Ng, A.C., A single point mutation controls the cholesterol dependence of Semliki Forest virus entry and exit (1998) J Cell Biol, 14, pp. 91-99
Thorén, P.E., Persson, D., Lincoln, P., Nordén, B., Membrane destabilizing properties of cell-penetrating peptides (2005) Biophys Chem, 114, pp. 169-179
Stankowski, S., Schwarz, G., Electrostatics of a peptide at a membrane/water interface. The pH dependence of melittin association with lipid vesicles (1990) Biochim Biophys Acta, 1025, pp. 164-172
Thiaudière, E., Siffert, O., Talbot, J.C., Bolard, J., Alouf, J.E., Theamphiphilic alpha-helix concept. Consequences on the structure of staphylococcal delta-toxin in solution and bound to lipids (1991) Eur J Biochem, 195, pp. 203-213
Pouny, Y., Rapaport, D., Mor, A., Nicolas, P., Shai, Y., Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes (1992) Biochemistry, 31, pp. 12416-12423
Rapaport, D., Shai, Y., Interaction of fluorescently labeled pardaxin and its analogues with lipid bilayers (1991) J Biol Chem, 266, pp. 23769-23775
Tarallo, R., Accardo, A., Falanga, A., Guarnieri, D., Vitiello, G., Clickable Functionalization of Liposomes with the gH625 Peptide from Herpes simplex Virus Type I for Intracellular Drug Delivery (2011) Chem Eur J, 17, pp. 12659-12668
Marsh, D., Electron spin resonance in membrane research: Protein-lipid interactions (2008) Methods, 46, pp. 83-96
Hope, M.J., Bally, M.B., Webb, G., Cullis, P.R., Vesicles of variable sizes produced by a rapid extrusion procedure (1985) Biochim Biophys Acta, 812, pp. 55-65
Fiske, C.H., Subbarow, Y., The colorimetric determination of phosphorus (1925) J Biol Chem, 66, pp. 375-400
Struck, D.K., Hoekstra, D., Pagano, R.E., Use of resonance energy transfer to monitor membrane fusion (1981) Biochemistry, 20, pp. 4093-4099
Cummings, J.E., Vanderlock, T.K., Aggregation and hemi-fusion of anionic vesicles induced by the antimicrobial peptide cryptdin-4 (2007) Biochim Biophys Acta, 1768, pp. 1796-1804
Schwarz, G., Stankowsky, S., Rizzo, V., Thermodynamic analysis of incorporation and aggregation in a membrane: application to the pore-forming peptide alamethicin (1986) Biochim Biophys Acta, 861, pp. 141-151
Beschiaschvili, G., Seelig, J., Melittin binding to mixed phosphatidylglycerol/phosphatidylcholine membranes (1990) Biochemistry, 29, pp. 52-58
de Kroon, A.I.P.M., Soekarjo, M.W., de Gier, J., de Kruijff, B., The role of charge and hydrophobicity in peptide-lipid interaction: a comparative study based on tryptophan fluorescence measurements combined with the use of aqueous and hydrophobic quenchers (1990) Biochemistry, 29, pp. 8229-8240
Eftink, M.R., Ghiron, C.A., Fluorescence quenching of indole and model micelle systems (1976) J Phys Chem, 80, pp. 486-493
Chernomordik, L. V., Kozlov, M. M., Protein-lipid interplay in fusion and fission of biological membranes (2003) Annu Rev Biochem, 72, pp. 175-207
Harrison, S. C., Viral membrane fusion (2008) Nature Structural Molecular Biology, 15, pp. 690-698
Connolly, S. A., Jackson, J. O., Jardetzky, T. S., Longnecker, R., Fusing structure and function: a structural view of the herpesvirus entry machinery (2011) Nat Rev Microbiol, 9, pp. 369-381
Chowdary, T. K., Cairns, T. M., Atanasiu, D., Cohen, G. H., Eisenberg, R. J., Crystal structure of the conserved herpesvirus fusion regulator complex gH-gL (2010) Nat Struct Mol Biol, 17, pp. 882-888
Heldwein, E. E., Lou, H., Bender, F. C., Cohen, G. H., Eisenberg, R. J., Crystal structure of glycoprotein B from herpes simplex virus 1 (2006) Science, 313, pp. 217-220
Hannah, B. P., Heldwein, E. E., Bender, F. C., Cohen, G. H., Eisenberg, R. J., Mutational evidence of internal fusion loops in herpes simplex virus glycoprotein B (2007) J Virol, 81, pp. 4858-4865
Bender, F. C., Whitbeck, J. C., Ponce de Leon, M., Lou, H., Eisenberg, R. J., Specific association of glycoprotein B with lipid rafts during herpes simplex virus entry (2003) J Virol, 77, pp. 9542-9552
de Almeida, R. F. M., Fedorov, A., Prieto, M., Sphingomyelin/Phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts (2003) Biophys J, 85, pp. 2406-2416
Parente, R. A., Nir, S., Szoka Jr., F. C., Mechanism of leakage of phospholipid vesicle contents induced by the peptide GALA (1990) Biochemistry, 29, pp. 8713-8719
Yau, W. M., Wimley, W. C., Gawrisch, K., White, S. H., The preference of tryptophan for membrane interfaces (1998) Biochemistry, 37, pp. 14713-14718
Gordon, L. M., Curtain, C. C., Zhong, Y. C., Kirkpatrick, A., Mobley, P. W., The amino-terminal peptide of HIV-1 glycoprotein 41 interacts with human erythrocyte membranes: peptide conformation, orientation and aggregation (1992) Biochim Biophys Acta, 1139, pp. 257-274
Swamy, M. J., Marsh, D., Spin-label electron spin resonance studies on the dynamics of the different phases of N-biotinylphosphatidylethanolamines (1994) Biochemistry, 33, pp. 11656-11663
Rama Krishna, Y. V. S., Marsh, D., Spin label ESR and 31P-NMR studies of the cubic and inverted hexagonal phases of dimyristoylphosphatidylcholine/myristic acid (1: 2, mol/mol) mixtures (1990) Biochim Biophys Acta, 1024, pp. 89-94
Hannah, B. P., Cairns, T. M., Bender, F. C., Whitbeck, J. C., Lou, H., Herpes simplex virus glycoprotein B associates with target membranes via its fusion loops (2009) J Virol, 83, pp. 6825-6836
Chatterjee, P. K., Eng, C. H., Kielian, M., Novel mutations that control the sphingolipid and cholesterol dependence of the Semliki Forest virus fusion protein (2002) J Virol, 76, pp. 12712-12722
Thor n, P. E., Persson, D., Lincoln, P., Nord n, B., Membrane destabilizing properties of cell-penetrating peptides (2005) Biophys Chem, 114, pp. 169-179
Thiaudi re, E., Siffert, O., Talbot, J. C., Bolard, J., Alouf, J. E., Theamphiphilic alpha-helix concept. Consequences on the structure of staphylococcal delta-toxin in solution and bound to lipids (1991) Eur J Biochem, 195, pp. 203-213
Hope, M. J., Bally, M. B., Webb, G., Cullis, P. R., Vesicles of variable sizes produced by a rapid extrusion procedure (1985) Biochim Biophys Acta, 812, pp. 55-65
Fiske, C. H., Subbarow, Y., The colorimetric determination of phosphorus (1925) J Biol Chem, 66, pp. 375-400
Struck, D. K., Hoekstra, D., Pagano, R. E., Use of resonance energy transfer to monitor membrane fusion (1981) Biochemistry, 20, pp. 4093-4099
Cummings, J. E., Vanderlock, T. K., Aggregation and hemi-fusion of anionic vesicles induced by the antimicrobial peptide cryptdin-4 (2007) Biochim Biophys Acta, 1768, pp. 1796-1804
de Kroon, A. I. P. M., Soekarjo, M. W., de Gier, J., de Kruijff, B., The role of charge and hydrophobicity in peptide-lipid interaction: a comparative study based on tryptophan fluorescence measurements combined with the use of aqueous and hydrophobic quenchers (1990) Biochemistry, 29, pp. 8229-8240
Eftink, M. R., Ghiron, C. A., Fluorescence quenching of indole and model micelle systems (1976) J Phys Chem, 80, pp. 486-493
Biophysical Characterization and Membrane Interaction of the Two Fusion Loops of Glycoprotein B from Herpes Simplex Type I Virus
The molecular mechanism of entry of herpesviruses requires a multicomponent fusion system. Cell invasion by Herpes simplex virus (HSV) requires four virally encoded glycoproteins: namely gD, gB and gH/gL. The role of gB has remained elusive until recently when the crystal structure of HSV-1 gB became available and the fusion potential of gB was clearly demonstrated. Although much information on gB structure/function relationship has been gathered in recent years, the elucidation of the nature of the fine interactions between gB fusion loops and the membrane bilayer may help to understand the precise molecular mechanism behind herpesvirus-host cell membrane fusion. Here, we report the first biophysical study on the two fusion peptides of gB, with a particular focus on the effects determined by both peptides on lipid bilayers of various compositions. The two fusion loops constitute a structural subdomain wherein key hydrophobic amino acids form a ridge that is supported on both sides by charged residues. When used together the two fusion loops have the ability to significantly destabilize the target membrane bilayer, notwithstanding their low bilayer penetration when used separately. These data support the model of gB fusion loops insertion into cholesterol enriched membranes.
Biophysical Characterization and Membrane Interaction of the Two Fusion Loops of Glycoprotein B from Herpes Simplex Type I Virus
No results.
Biophysical Characterization and Membrane Interaction of the Two Fusion Loops of Glycoprotein B from Herpes Simplex Type I Virus