Keywords: Cell-Penetrating Peptides, Endocytosis, Intracellular Delivery, Membrane Fusion, Viral Fusion Proteins, Alamethicin, Arginine, Cell Penetrating Peptide, Clathrin, Coat Protein, Coat Protein Gamma Peptide, Drug Vehicle, Galanin, Gh625 Protein, Glycoprotein, Glycoprotein Gp 41, Hepatitis B Surface Antigen, Lysine, Mastoparan, Melittin, Membrane Protein, Model Amphipathic Peptide, Pep 1 Protein, Polyarginine, Polypeptide Antibiotic Agent, Pres2 Protein, Protein Vp22, Synthetic Peptide, Transactivator Protein, Transportan, Tryptophan, Unclassified Drug, Unindexed Drug, Virus Fusion Protein, Virus Protein, Amino Acid Sequence, Amino Acid Substitution, Cell Membrane Permeability, Cell Transport, Cytoplasm, Drug Delivery System, Drug Stability, Hepatitis B Virus, Herpes Simplex Virus 1, Human, Human Immunodeficiency Virus 1, Hydrophilicity, Hydrophobicity, Immunogenicity, Internalization, Nodavirus, Nonhuman, Nuclear Magnetic Resonance Spectroscopy, Protein Binding, Protein Conformation, Protein Domain, Protein Function, Protein Modification, Protein Motif, Protein Synthesis, Review, Signal Transduction, Thermodynamics, Virus Capsid, Virus Envelope, Virus Genome, Virus Replication, Virus Strain, Biological Transport, Cell Nucleus, Recombinant Fusion Proteins, Viral Proteins,
Affiliations: *** IBB - CNR ***
Department of Experimental Medicine - II, University of Naples, Via De Crecchio 7, 80138, Napoli, Italy
Department of Biological Sciences, Division of Biostructures, University of Naples Federico II, Via Mezzocannone 16, 80134, Napoli, Italy
Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples Federico II, Via Mezzocannone 16, 80134, Napoli, Italy
Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134, Napoli, Italy
References: Raty, J.K., Lesch, H.P., Wirth, T., Yla-Herttuala, S., Improving safety of gene therapy (2008) Current Drug Safety, 3 (1), pp. 46-53. , http://www.ingentaconnect.com/content/ben/cds/2008/00000003/00000001/ art00007, DOI 10.2174/15748860878333392
Duan, Y., Zhang, S., Wang, B., Yang, B., Zhi, D., The biological routes of gene delivery mediated by lipid-based non-viral vectors (2009) Expert Opin. Drug Deliv., 6, pp. 1351-1361
Ditto, A.J., Shah, P.N., Yun, Y.H., Non-viral gene delivery using nanoparticles (2009) Expert Opin. Drug Deliv., 6, pp. 1149-60
Pathak, A., Patnaik, S., Gupta, K.C., Recent trends in non-viral vectormediated gene delivery (2009) Biotechnol. J., 4, pp. 1559-1572
Langel Ü, (2007) Handbook of Cell-Penetrating Peptides, , U. Langel (Ed.). CRC Taylor & Francis
Heitz, F., Morris, M.C., Divita, G., Twenty years of cellpenetrating peptides: From molecular mechanisms to therapeutics (2009) Br. J. Pharmacol., 157, pp. 195-206
Deshayes, S., Morris, M., Heitz, F., Divita, G., Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy (2008) Advanced Drug Delivery Reviews, 60 (4-5), pp. 537-547. , DOI 10.1016/j.addr.2007.09.005, PII S0169409X07002888
Snyder, E.L., Dowdy, S.F., Recent advances in the use of protein transduction domains for the delivery of peptides, proteins and nucleic acids in vivo (2005) Expert Opinion on Drug Delivery, 2 (1), pp. 43-51. , DOI 10.1517/17425247.2.1.43
Eguchi, A., Dowdy, S.F., SiRNA delivery using peptide transduction domains (2009) Trends Pharmacol. Sci., 30, pp. 341-345
Frankel, A.D., Pabo, C.O., Cellular uptake of the tat protein from human immunodeficiency virus (1988) Cell, 55 (6), pp. 1189-1193. , DOI 10.1016/0092-8674(88)90263-2
Joliot, A., Pernelle, C., Deagostini-Bazin, H., Prochiantz, A., Antennapedia homeobox peptide regulates neural morphogenesis (1991) Proceedings of the National Academy of Sciences of the United States of America, 88 (5), pp. 1864-1868
Derossi, D., Joliot, A.H., Chassaing, G., Prochiantz, A., The third helix of the Antennapedia homeodomain translocates through biological membranes (1994) Journal of Biological Chemistry, 269 (14), pp. 10444-10450
Vives, E., Brodin, P., Lebleu, B., A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus (1997) Journal of Biological Chemistry, 272 (25), pp. 16010-16017. , DOI 10.1074/jbc.272.25.16010
Schwarze, S.R., Ho, A., Vocero-Akbani, A., Dowdy, S.F., In vivo protein transduction: Delivery of a biologically active protein into the mouse (1999) Science, 285 (5433), pp. 1569-1572. , DOI 10.1126/science.285.5433.1569
Pooga, M., Hallbrink, M., Zorko, M., Langel, U., Cell penetration by transportan (1998) FASEB Journal, 12 (1), pp. 67-77
Elliott, G., O'Hare, P., Intercellular trafficking and protein delivery by a herpesvirus structural protein (1997) Cell, 88 (2), pp. 223-233. , DOI 10.1016/S0092-8674(00)81843-7
Oess, S., Hildt, E., Novel cell permeable motif derived from the PreS2-domain of hepatitis-B virus surface antigens (2000) Gene Therapy, 7 (9), pp. 750-758. , DOI 10.1038/sj/gt/3301154
Rennert, R., Neudorf, I., Beck-Sickinger, A., Calcitoinin-derived peptide carriers: Mechanisms and application (2008) Adv. Drug Deliv. Rev., 60, pp. 485-499
Jarver, P., Langel, K., El-Andaloussi, S., Langel, U., Applications of cell-penetrating peptides in regulation of gene expression (2007) Biochemical Society Transactions, 35 (4), pp. 770-774
Ter-Avetisyan, G., Tünnemann, G., Nowak, D., Nitschke, M., Herrmann, A., Drab, M., Cardoso, M.C., Cell entry of arginine-rich peptides is independent of endocytosis (2009) J. Biol. Chem., 284, pp. 3370-3378
Stewart, K.M., Horton, K.L., Kelley, S.O., Cell-penetrating peptides as delivery vehicles for biology and medicine (2008) Organic and Biomolecular Chemistry, 6 (13), pp. 2242-2255. , DOI 10.1039/b719950c
Vives, E.J., Schmidt, A., Pelegrin. Cell-penetrating and celltargeting peptides in drug delivery (2008) Biochim. Biophys. Acta, 1786, pp. 126-138
Dietz, G.P.H., Bahr, M., Delivery of bioactive molecules into the cell: The Trojan horse approach (2004) Molecular and Cellular Neuroscience, 27 (2), pp. 85-131. , DOI 10.1016/j.mcn.2004.03.005, PII S1044743104000715
Schwarze, S.R., Hruska, K.A., Dowdy, S.F., Protein transduction: Unrestricted delivery into all cells? (2000) Trends in Cell Biology, 10 (7), pp. 290-295. , DOI 10.1016/S0962-8924(00)01771-2, PII S0962892400017712
Fonseca, S.B., Pereira, M.P., Kelley, S.O., Recent advances in the use of cell-penetrating peptides for medical and biological applications (2009) Adv. Drug Deliv. Rev., 30 (61), pp. 953-964. , (11
Morris, M.C., Deshayes, S., Heitz, F., Divita, G., Cell-penetrating peptides: From molecular mechanisms to therapeutics (2008) Biology of the Cell, 100 (4), pp. 201-217. , DOI 10.1042/BC20070116
Sawant, R., Torchilin, V., Intracellular transduction using cellpenetrating peptides (2009) Mol. Biosyst., 6, pp. 628-640
Loret, E.P., Vives, E., Ho, P.S., Rochat, H., Van Rietschoten, J., Johnson Jr., W.C., Activating region of HIV-1 Tat protein: Vacuum UV circular dichroism and energy minimization (1991) Biochem., 30, pp. 6013-6023
Bloch-Gallego, E., Le Roux, I., Joliot, A.H., Volovitch, M., Henderson, C.E., Prochiantz, A., Antennapedia homeobox peptide enhances growth and branching of embryonic chicken motoneurons in vitro (1993) Journal of Cell Biology, 120 (2), pp. 485-492. , DOI 10.1083/jcb.120.2.485
Gehring, W.J., Affolter, M., Burglin, T., Homeodomain proteins (1994) Annual Review of Biochemistry, 63, pp. 487-526
Bellet-Amalric, E., Blaudez, D., Desbat, B., Graner, F., Gauthier, F., Renault, A., Interaction of the third helix of Antennapedia homeodomain and a phospholipid monolayer, studied by ellipsometry and PM-IRRAS at the air-water interface (2000) Biochimica et Biophysica Acta - Biomembranes, 1467 (1), pp. 131-143. , DOI 10.1016/S0005-2736(00)00218-2, PII S0005273600002182
Magzoub, M., Kilk, K., Eriksson L.E.Goran, Langel, U., Graslund, A., Interaction and structure induction of cell-penetrating peptides in the presence of phospholipid vesicles (2001) Biochimica et Biophysica Acta - Biomembranes, 1512 (1), pp. 77-89. , DOI 10.1016/S0005-2736(01)00304-2, PII S0005273601003042
Magzoub, M., Eriksson, L.E.G., Graslund, A., Conformational states of the cell-penetrating peptide penetratin when interacting with phospholipid vesicles: Effects of surface charge and peptide concentration (2002) Biochimica et Biophysica Acta - Biomembranes, 1563 (1-2), pp. 53-63. , DOI 10.1016/S0005-2736(02)00373-5, PII S0005273602003735
Lindgren, M., Gallet, X., Soomets, U., Hällbrink, M., Brakenhielm, E., Pooga, M., Brasseur, R., Langel, Ü., Translocation properties of novel cell penetrating transportan and penetratin analogues (2000) Bioconjug. Chem., 11, pp. 619-626
Lindberg, M., Jarvet, J., Langel, U., Graslund, A., Secondary structure and position of the cell-penetrating peptide transportan in SDS micelles as determined by NMR (2001) Biochemistry, 40 (10), pp. 3141-3149. , DOI 10.1021/bi0008985
Barany-Wallje, E., Andersson, A., Graslund, A., Maler, L., NMR solution structure and position of transportan in neutral phospholipid bicelles (2004) FEBS Letters, 567 (2-3), pp. 265-269. , DOI 10.1016/j.febslet.2004.04.079, PII S0014579304005551
Steiner, V., Schar, M., Bornsen, K.O., Mutter, M., Retention behaviour of a template-assembled synthetic protein and its amphiphilic building blocks on reversed-phase columns (1991) J. Chromatogr., 586, pp. 43-50
Oehlke, J., Scheller, A., Wiesner, B., Krause, E., Beyermann, M., Klauschenz, E., Melzig, M., Bienert, M., Cellular uptake of an α-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically (1998) Biochimica et Biophysica Acta - Biomembranes, 1414 (1-2), pp. 127-139. , DOI 10.1016/S0005-2736(98)00161-8, PII S0005273698001618
Morris, M.C., Vidal, P., Chaloin, L., Heitz, F., Divita, G., A new peptide vector for efficient delivery of oligonucleotides into mammalian cells (1997) Nucleic Acids Research, 25 (14), pp. 2730-2736. , DOI 10.1093/nar/25.14.2730
Morris, M.C., Chaloin, L., Mery, J., Heitz, F., Divita, G., A novel potent strategy for gene delivery using a single peptide vector as a carrier (1999) Nucleic Acids Research, 27 (17), pp. 3510-3517. , DOI 10.1093/nar/27.17.3510
Gallaher, W.R., Detection of a fusion peptide sequence in the transmembrane protein of human immunodeficiency virus (1987) Cell, 50, pp. 327-328
Freed, E.O., Myers, D.J., Risser, R., Characterization of the fusion domain of the human immunodeficiency virus type 1 envelope glycoprotein gp41 (1990) Proc. Natl. Acad. Sci. USA, 87, pp. 4650-4654
Delahunty, M.D., Rhee, I., Freed, E.O., Bonifacino, J.S., Mutational analysis of the fusion peptide of the human immunodeficiency virus type 1: Identification of critical glycine residues (1996) Virology, 218 (1), pp. 94-102. , DOI 10.1006/viro.1996.0169
Kalderon, D., Richardson, W.D., Markham, A.F., Smith, A.E., In vitro mutagenesis of a putative DNA binding domain of SV40 large-T (1984) Nature, 311, pp. 33-38
Dingwall, C., Laskey, R., The nuclear membrane (1992) Science, 258, pp. 942-947
Morris, M.C., Depollier, J., Mery, J., Heitz, F., Divita, G., A peptide carrier for the delivery of biologically active proteins into mammalian cells (2001) Nature Biotechnology, 19 (12), pp. 1173-1176. , DOI 10.1038/nbt1201-1173
Deshayes, S., Gerbal-Chaloin, S., Morris, M.C., Aldrian-Herrada, G., Charnet, P., Divita, G., Heitz, F., On the mechanism of non-endosomial peptide-mediated cellular delivery of nucleic acids (2004) Biochimica et Biophysica Acta - Biomembranes, 1667 (2), pp. 141-147. , DOI 10.1016/j.bbamem.2004.09.010, PII S000527360400241X
Futaki, S., Suzuki, T., Ohashi, W., Yagami, T., Tanaka, S., Ueda, K., Arginine-rich peptides: An abundant source of membranepermeable peptides having potential as carriers for intracellular protein delivery (2001) J. Biol. Chem., 276, pp. 5836-5840
Elliott, G.D., Meredith, D.M., The herpes simplex virus type 1 tegument protein VP22 is encoded by gene UL49 (1992) J. Gen. Virol., 73, pp. 723-726
Sciortino, M.-T., Suzuki, M., Taddeo, B., Roizman, B., RNAs extracted from herpes simplex virus 1 virions: Apparent selectivity of viral but not cellular RNAs packaged in virions (2001) Journal of Virology, 75 (17), pp. 8105-8116. , DOI 10.1128/JVI.75.17.8105-8116.2001
Normand, N., Van Leeuwen, H., O'Hare, P., Particle formation by a conserved domain of the herpes simplex virus protein VP22 facilitating protein and nucleic acid delivery (2001) J. Biol. Chem., 276, pp. 15042-15050
Sciortino, M.T., Taddeo, B., Poon, A.P.W., Mastino, A., Roizman, B., Of the three tegument proteins that package mRNA in herpes simplex virions, one (VP22) transports the mRNA to uninfected cells for expression prior to viral infection (2002) Proceedings of the National Academy of Sciences of the United States of America, 99 (12), pp. 8318-8323. , DOI 10.1073/pnas.122231699
Hildt, E., Urban, S., Hofschneider, P.H., Characterization of essential domains for the functionality of the MHBst transcriptional activator and identification of a minimal MHBst transactivator (1995) Oncogene, 11, pp. 2055-2066
Banerjee, M., Johnson, J.E., Activation
exposure and penetration of virally encoded
membrane-active polypeptides during nonenveloped virus entry (2008) Curr. Protein Pept. Sci., pp. 916-927
Janshoff, A., Bong, D.T., Steinem, C., Johnson, J.E., Ghadiri, M.R., An animal virus-derived peptide switches membrane morphology: Possible relevance to nodaviral transfection processes (1999) Biochem., 38, pp. 5328-5336
Bong, D.T., Janshoff, A., Steinem, C., Ghadiri, M.R., Membrane partitioning of the cleavage peptide in flock house virus (2000) Biophysical Journal, 78 (2), pp. 839-845
Nakase, I., Hirose, H., Tanaka, G., Tadokoro, A., Kobayashi, S., Takeuchi, T., Futaki, S., Cell-surface accumulation of flock house virus-derived peptide leads to efficient internalization via macropinocytosis (2009) Mol. Ther., 17, pp. 1868-1876
Galdiero, S., Falanga, A., Vitiello, M., Raiola, L., Russo, L., Pedone, C., Isernia, C., Galdiero, M., The presence of a single Nterminal histidine residue enhances the fusogenic properties of a membranotropic peptide derived from herpes simplex virus type 1 glycoprotein H (2010) J. Biol. Chem, 285 (22), pp. 17123-17136
Falanga, M., Vitiello, M., Cantisani, R., Tarallo, D., Guarnieri, E., Mignogna, P., Netti, C., Galdiero, A peptide derived from Herpes Simplex Virus type 1 glycoprotein H: Membrane translocation and applications to the delivery of quantum dots (2011) Nanomedicine, , doi:10.1016/j.n.nano.2011.04.009
Bais, M.V., Kumar, S., Tiwari, A.K., Kataria, R.S., Nagaleekar, V.K., Shrivastava, S., Chindera, K., Novel Rath peptide for intracellular delivery of protein and nucleic acids (2008) Biochem. Biophys. Res. Commun., 370, pp. 27-32
Plank, C., Zauner, W., Wagner, E., Application of membrane-active peptides for drug and gene delivery across cellular membranes (1998) Advanced Drug Delivery Reviews, 34 (1), pp. 21-35. , DOI 10.1016/S0169-409X(98)00005-2, PII S0169409X98000052
Harrison, S.C., Viral membrane fusion (2008) Nature Structural and Molecular Biology, 15 (7), pp. 690-698. , DOI 10.1038/nsmb.1456, PII NSMB1456
White, J.M., Delos, S.E., Brecher, M., Schornberg, K., Structures and mechanisms of viral membrane fusion proteins: Multiple variations on a common theme (2008) Critical Reviews in Biochemistry and Molecular Biology, 43 (3), pp. 189-219. , DOI 10.1080/10409230802058320, PII 794225034
Tsai, B., Penetration of non-enveloped viruses into the cytoplasm (2007) Annu. Rev. Cell Dev. Biol., 23, pp. 23-43
Zlotnick, A., Reddy, V.S., Dasgupta, R., Schneemann, A., Ray Jr., W.J., Rueckert, R.R., Johnson, J.E., Capsid assembly in a family of animal viruses primes an autoproteolytic maturation that depends on a single aspartic acid residue (1994) Journal of Biological Chemistry, 269 (18), pp. 13680-13684
Arnold, E., Luo, M., Vriend, G., Implications of the picornavirus capsid structure for polyprotein processing (1987) Proceedings of the National Academy of Sciences of the United States of America, 84 (1), pp. 21-25. , DOI 10.1073/pnas.84.1.21
Ivanovic, T., Agosto, M.A., Zhang, L., Chandran, K., Harrison, S.C., Nibert, M.L., Peptides released from reovirus outer capsid form membrane pores that recruit virus particles (2008) EMBO Journal, 27 (8), pp. 1289-1298. , DOI 10.1038/emboj.2008.60, PII EMBOJ200860
Arias, C.F., Romero, P., Alvarez, V., Lopez, S., Trypsin activation pathway of rotavirus infectivity (1996) Journal of Virology, 70 (9), pp. 5832-5839
Greber, U.F., Webster, P., Weber, J., Helenius, A., The role of the adenovirus protease in virus entry into cells (1996) EMBO Journal, 15 (8), pp. 1766-1777
Da Costa, B., Chevalier, C., Henry, C., Huet, J.-C., Petit, S., Lepault, J., Boot, H., Delmas, B., The capsid of infectious bursal disease virus contains several small peptides arising from the maturation process of pVP2 (2002) Journal of Virology, 76 (5), pp. 2393-2402. , DOI 10.1128/jvi.76.5.2393-2402.2002
Galloux, M., Libersou
, S., Alves, I.D., Marquant, R., Salgado, G.F., Rezaei, H., Lepault, J., Morellet, N., NMR structure of a viral peptide inserted in artificial membranes (2010) J. Biol. Chem., 285 (25), pp. 19409-19421. , "A View on the Early Steps OF THE BIRNAVIRUS ENTRY PROCESS
Harrison, S.C., Mechanism of membrane fusion by viral envelope proteins (2005) Advances in Virus Research, 64, pp. 231-261. , DOI 10.1016/S0065-3527(05)64007-9, PII S0065352705640079, Virus Structure and Assembly
Lamb, R.A., Paterson, R.G., Jardetzky, T.S., Paramyxovirus membrane fusion: Lessons from the F and HN atomic structures (2006) Virology, 344 (1), pp. 30-37. , DOI 10.1016/j.virol.2005.09.007, PII S0042682205005684
Stiasny, K., Heinz, F.X., Flavivirus membrane fusion (2006) Journal of General Virology, 87 (10), pp. 2755-2766. , DOI 10.1099/vir.0.82210-0
Kielian, M., Class II virus membrane fusion proteins (2006) Virology, 344 (1), pp. 38-47. , DOI 10.1016/j.virol.2005.09.036, PII S0042682205006008
Kielian, M., Rey, F.A., Virus membrane-fusion proteins: More than one way to make a hairpin (2006) Nature Reviews Microbiology, 4 (1), pp. 67-76. , DOI 10.1038/nrmicro1326, PII N1326
Weissenhorn, W., Hinz, A., Gaudin, Y., Virus membrane fusion (2007) FEBS Letters, 581 (11), pp. 2150-2155. , DOI 10.1016/j.febslet.2007.01.093, PII S0014579307001664, Membrane Trafficking
Backovic, M., Jardetzky, T.S., Class III viral membrane fusion proteins (2009) Curr. Opin. Struct. Biol., 19, pp. 189-196
Wilson, I.A., Skehel, J.J., Wiley, D.C., Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution (1981) Nature, 289 (5796), pp. 366-373
Fass, D., Harrison, S.C., Kim, P.S., Retrovirus envelope domain at 1.7 angstrom resolution (1996) Nat. Struct. Biol., 3 (5), pp. 465-469
Weissenhorn, W., Carfi, A., Lee, K.-H., Skehel, J.J., Wiley, D.C., Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain (1998) Molecular Cell, 2 (5), pp. 605-616
Xu, Y., Liu, Y., Lou, Z., Qin, L., Li, X., Bai, Z., Pang, H., Rao, Z., Structural basis for coronavirus-mediated membrane fusion: Crystal structure of mouse hepatitis virus spike protein fusion core (2004) Journal of Biological Chemistry, 279 (29), pp. 30514-30522. , DOI 10.1074/jbc.M403760200
Yin, H.-S., Wen, X., Paterson, R.G., Lamb, R.A., Jardetzky, T.S., Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation (2006) Nature, 439 (7072), pp. 38-44. , DOI 10.1038/nature04322
Schibli, D.J., Weissenhorn, W., Class I and class II viral fusion protein structures reveal similar principles in membrane fusion (2004) Molecular Membrane Biology, 21 (6), pp. 361-371. , DOI 10.1080/09687860400017784
Rey, F.A., Heinz, F.X., Mandl, C., Kunz, C., Harrison, S.C., The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution (1995) Nature, 375 (6529), pp. 291-298
Lescar, J., Roussel, A., Wien, M.W., Navaza, J., Fuller, S.D., Wengler, G., Wengler, G., Rey, F.A., The fusion glycoprotein shell of Semliki Forest virus: An icosahedral assembly primed for fusogenic activation at endosomal pH (2001) Cell, 105 (1), pp. 137-148. , DOI 10.1016/S0092-8674(01)00303-8
Modis, Y., Ogata, S., Clements, D., Harrison, S.C., A ligand-binding pocket in the dengue virus envelope glycoprotein (2003) Proceedings of the National Academy of Sciences of the United States of America, 100 (12), pp. 6986-6991. , DOI 10.1073/pnas.0832193100
Roche, S., Bressanelli, S., Rey, F.A., Gaudin, Y., Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G (2006) Science, 313 (5784), pp. 187-191. , DOI 10.1126/science.1127683
Heldwein, E.E., Lou, H., Bender, F.C., Cohen, G.H., Eisenberg, R.J., Harrison, S.C., Crystal structure of glycoprotein B from herpes simplex virus 1 (2006) Science, 313 (5784), pp. 217-220. , DOI 10.1126/science.1126548
Kadlec, J., Loureiro, S., Abrescia, N.G., Stuart, D.I., Jones, I.M., The postfusion structure of baculovirus gp64 supports a unified view of viral fusion machines (2008) Nat. Struct. Mol. Biol., 15 (10), pp. 1024-1030
Backovic, M., Longnecker, R., Jardetzky, T.S., Structure of a trimeric variant of the Epstein-Barr virus glycoprotein. B (2009) Proc. Natl. Acad. Sci., U S A, 106, pp. 2880-2885
Scudiero, O., Galdiero, S., Cantisani, M., Di Noto, R., Galdiero, M., D'Isanto, M., Naclerio, G., Salvatore, F., Synthetic analogs of human beta-defensins display a more effective antimicrobial activity than wild-type peptides (2010) Antimicrob. Agents Chemother., 54 (6), pp. 2312-2322
Galdiero, S., Galdiero, M., Pedone, C., β-barrel membrane bacterial proteins: Structure, function, assembly and interaction with lipids (2007) Current Protein and Peptide Science, 8 (1), pp. 63-82. , http://www.ingentaconnect.com/content/ben/cpps/2007/00000008/00000001/ art00007, DOI 10.2174/138920307779941541
Falanga, A., Cantisani, M., Pedone, C., Galdiero, S., Membrane fusion and fission: Enveloped viruses (2009) Protein Pep. Lett., 16 (7), pp. 751-759
Galdiero, S., Developments in membrane fusion (2009) Protein Pep. Lett., 16 (7), p. 711
Fominaya, J., Wels, W., Target cell-specific DNA transfer mediated by a chimeric multidomain protein: Novel non-viral gene delivery system (1996) Journal of Biological Chemistry, 271 (18), pp. 10560-10568. , DOI 10.1074/jbc.271.18.10560
Gottschalk, S., Sparrow, J.T., Hauer, J., Mims, M.P., Leland, F.E., Woo, S.L.C., Smith, L.C., A novel DNA-peptide complex for efficient gene transfer and expression in mammalian cells (1996) Gene Therapy, 3 (5), pp. 448-457
Greber, U.F., Willetts, M., Webster, P., Helenius, A., Stepwise dismantling of adenovirus 2 during entry into cells (1993) Cell, 75 (3), pp. 477-486. , DOI 10.1016/0092-8674(93)90382-Z
Leopold, P.L., Ferris, B., Grinberg, I., Worgall, S., Hackett, N.R., Crystal, R.G., Fluorescent virions: Dynamic tracking of the pathway of adenoviral gene transfer vectors in living cells (1998) Human Gene Therapy, 9 (3), pp. 367-378
Joliot, A., Prochiantz, A., Transduction peptides: From technology to physiology (2004) Nature Cell Biology, 6 (3), pp. 189-196. , DOI 10.1038/ncb0304-189
Mae, M., Langel, U., Cell-penetrating peptides as vectors for peptide, protein and oligonucleotide delivery (2006) Current Opinion in Pharmacology, 6 (5), pp. 509-514. , DOI 10.1016/j.coph.2006.04.004, PII S1471489206001251, Anti-infectives/New Technologies
Deshayes, S., Plenat, T., Aldrian-Herrada, G., Divita, G., Le Grimellec, C., Heitz, F., Primary amphipathic cell-penetrating peptides: Structural requirements and interactions with model membranes (2004) Biochemistry, 43 (24), pp. 7698-7706. , DOI 10.1021/bi049298m
Henriques, S.T., Melo, M.N., Castanho, M.A.R.B., Cell-penetrating peptides and antimicrobial peptides: How different are they? (2006) Biochemical Journal, 399 (1), pp. 1-7. , DOI 10.1042/BJ20061100
Crombez, L., Morris, M.C., Dufort, S., Aldrian-Herrada, G., Nguyen, Q., Mc Master, G., Coll, J.L., Divita, G., Targeting cyclin B1 through peptide-based delivery of siRNA prevents tumour growth (2009) Nucleic Acids Res., 37 (14), pp. 4559-4569
Konate, K., Crombez, L., Deshayes, S., Decaffmeyer, M., Thomas, A., Brasseur, R., Aldrian, G., Divita, G., Insight into the cellular uptake mechanism of a secondary amphipathic cellpenetrating peptide for siRNA delivery (2010) Biochem., 49 (16), pp. 3393-3402
Gallo, G., Making proteins into drugs: Assisted delivery of proteins and peptides into living neurons (2003) Methods Cell Biol., 71, pp. 325-338
Henriques, S.T., Castanho, M.A.R.B., Translocation or membrane disintegration? Implication of peptide-membrane interactions in pep-1 activity (2008) Journal of Peptide Science, 14 (4), pp. 482-487. , DOI 10.1002/psc.1003
El-Sayed, A., Masuda, T., Khalil, I., Akita, H., Harashima, H., Enhanced gene expression by a novel stearylated INF7 peptide derivative through fusion independent endosomal escape (2009) J.Control Release, 138 (2), pp. 160-167
Neundorf, I., Rennert, R., Hoyer, J., Schramm, F., Lobner, K., Kitanovic, I., Wolfl, S., Fusion of a short HA2-derived peptide sequence to cell-penetrating peptides improves cytosolyc uptake
but enhances cytotoxic activity (2009) Pharmac., 2, pp. 49-65
Funhoff, A.M., Van Nostrum, C.F., Lok, M.C., Fretz, M.M., Crommelin, D.J.A., Hennink, W.E., Poly(3-guanidinopropyl methacrylate): A novel cationic polymer for gene delivery (2004) Bioconjugate Chemistry, 15 (6), pp. 1212-1220. , DOI 10.1021/bc049864q
Jiang, X., Lok, M.C., Hennink, W.E., Degradable-brushed pHEMA-pDMAEMA synthesized via ATRP and click chemistry for gene delivery (2007) Bioconjugate Chemistry, 18 (6), pp. 2077-2084. , DOI 10.1021/bc0701186
Mastrobattista, E., Koning, G.A., Van Bloois, L., Filipe, A.C.S., Jiskoot, W., Storm, G., Functional characterization of an endosome-disruptive peptide and its application in cytosolic delivery of immunoliposome-entrapped proteins (2002) Journal of Biological Chemistry, 277 (30), pp. 27135-27143. , DOI 10.1074/jbc.M200429200
Fretz, M.M., Mastrobattista, E., Koning, G.A., Jiskoot, W., Storm, G., Strategies for cytosolic delivery of liposomal macromolecules (2005) International Journal of Pharmaceutics, 298 (2), pp. 305-309. , DOI 10.1016/j.ijpharm.2005.02.040, PII S0378517305002474, Selected Contribution from the 5th European Workshop on Particulate Systems
Simeoni, F., Morris, M.C., Heitz, F., Divita, G., Insight into the mechanism of the peptide-based gene delivery system MPG: Implications for delivery of siRNA into mammalian cells (2003) Nucleic Acids Research, 31 (11), pp. 2717-2724. , DOI 10.1093/nar/gkg385
Tu, Y., Kim, J.-S., A fusogenic segment of glycoprotein H from herpes simplex virus enhances transfection efficiency of cationic liposomes (2008) Journal of Gene Medicine, 10 (6), pp. 646-654. , DOI 10.1002/jgm.1184
Raty, J. K., Lesch, H. P., Wirth, T., Yla-Herttuala, S., Improving safety of gene therapy (2008) Current Drug Safety, 3 (1), pp. 46-53. , http: //www. ingentaconnect. com/content/ben/cds/2008/00000003/00000001/ art00007, DOI 10. 2174/15748860878333392
Ditto, A. J., Shah, P. N., Yun, Y. H., Non-viral gene delivery using nanoparticles (2009) Expert Opin. Drug Deliv., 6, pp. 1149-60
Langel, (2007) Handbook of Cell-Penetrating Peptides, , U. Langel (Ed.). CRC Taylor & Francis
Snyder, E. L., Dowdy, S. F., Recent advances in the use of protein transduction domains for the delivery of peptides, proteins and nucleic acids in vivo (2005) Expert Opinion on Drug Delivery, 2 (1), pp. 43-51. , DOI 10. 1517/17425247. 2. 1. 43
Frankel, A. D., Pabo, C. O., Cellular uptake of the tat protein from human immunodeficiency virus (1988) Cell, 55 (6), pp. 1189-1193. , DOI 10. 1016/0092-8674 (88) 90263-2
Schwarze, S. R., Ho, A., Vocero-Akbani, A., Dowdy, S. F., In vivo protein transduction: Delivery of a biologically active protein into the mouse (1999) Science, 285 (5433), pp. 1569-1572. , DOI 10. 1126/science. 285. 5433. 1569
Stewart, K. M., Horton, K. L., Kelley, S. O., Cell-penetrating peptides as delivery vehicles for biology and medicine (2008) Organic and Biomolecular Chemistry, 6 (13), pp. 2242-2255. , DOI 10. 1039/b719950c
Vives, E. J., Schmidt, A., Pelegrin. Cell-penetrating and celltargeting peptides in drug delivery (2008) Biochim. Biophys. Acta, 1786, pp. 126-138
Dietz, G. P. H., Bahr, M., Delivery of bioactive molecules into the cell: The Trojan horse approach (2004) Molecular and Cellular Neuroscience, 27 (2), pp. 85-131. , DOI 10. 1016/j. mcn. 2004. 03. 005, PII S1044743104000715
Schwarze, S. R., Hruska, K. A., Dowdy, S. F., Protein transduction: Unrestricted delivery into all cells? (2000) Trends in Cell Biology, 10 (7), pp. 290-295. , DOI 10. 1016/S0962-8924 (00) 01771-2, PII S0962892400017712
Fonseca, S. B., Pereira, M. P., Kelley, S. O., Recent advances in the use of cell-penetrating peptides for medical and biological applications (2009) Adv. Drug Deliv. Rev., 30 (61), pp. 953-964. , (11
Morris, M. C., Deshayes, S., Heitz, F., Divita, G., Cell-penetrating peptides: From molecular mechanisms to therapeutics (2008) Biology of the Cell, 100 (4), pp. 201-217. , DOI 10. 1042/BC20070116
Loret, E. P., Vives, E., Ho, P. S., Rochat, H., Van Rietschoten, J., Johnson Jr., W. C., Activating region of HIV-1 Tat protein: Vacuum UV circular dichroism and energy minimization (1991) Biochem., 30, pp. 6013-6023
Gehring, W. J., Affolter, M., Burglin, T., Homeodomain proteins (1994) Annual Review of Biochemistry, 63, pp. 487-526
Morris, M. C., Vidal, P., Chaloin, L., Heitz, F., Divita, G., A new peptide vector for efficient delivery of oligonucleotides into mammalian cells (1997) Nucleic Acids Research, 25 (14), pp. 2730-2736. , DOI 10. 1093/nar/25. 14. 2730
Morris, M. C., Chaloin, L., Mery, J., Heitz, F., Divita, G., A novel potent strategy for gene delivery using a single peptide vector as a carrier (1999) Nucleic Acids Research, 27 (17), pp. 3510-3517. , DOI 10. 1093/nar/27. 17. 3510
Gallaher, W. R., Detection of a fusion peptide sequence in the transmembrane protein of human immunodeficiency virus (1987) Cell, 50, pp. 327-328
Freed, E. O., Myers, D. J., Risser, R., Characterization of the fusion domain of the human immunodeficiency virus type 1 envelope glycoprotein gp41 (1990) Proc. Natl. Acad. Sci. USA, 87, pp. 4650-4654
Delahunty, M. D., Rhee, I., Freed, E. O., Bonifacino, J. S., Mutational analysis of the fusion peptide of the human immunodeficiency virus type 1: Identification of critical glycine residues (1996) Virology, 218 (1), pp. 94-102. , DOI 10. 1006/viro. 1996. 0169
Morris, M. C., Depollier, J., Mery, J., Heitz, F., Divita, G., A peptide carrier for the delivery of biologically active proteins into mammalian cells (2001) Nature Biotechnology, 19 (12), pp. 1173-1176. , DOI 10. 1038/nbt1201-1173
Elliott, G. D., Meredith, D. M., The herpes simplex virus type 1 tegument protein VP22 is encoded by gene UL49 (1992) J. Gen. Virol., 73, pp. 723-726
Sciortino, M. -T., Suzuki, M., Taddeo, B., Roizman, B., RNAs extracted from herpes simplex virus 1 virions: Apparent selectivity of viral but not cellular RNAs packaged in virions (2001) Journal of Virology, 75 (17), pp. 8105-8116. , DOI 10. 1128/JVI. 75. 17. 8105-8116. 2001
Sciortino, M. T., Taddeo, B., Poon, A. P. W., Mastino, A., Roizman, B., Of the three tegument proteins that package mRNA in herpes simplex virions, one (VP22) transports the mRNA to uninfected cells for expression prior to viral infection (2002) Proceedings of the National Academy of Sciences of the United States of America, 99 (12), pp. 8318-8323. , DOI 10. 1073/pnas. 122231699
Bong, D. T., Janshoff, A., Steinem, C., Ghadiri, M. R., Membrane partitioning of the cleavage peptide in flock house virus (2000) Biophysical Journal, 78 (2), pp. 839-845
Bais, M. V., Kumar, S., Tiwari, A. K., Kataria, R. S., Nagaleekar, V. K., Shrivastava, S., Chindera, K., Novel Rath peptide for intracellular delivery of protein and nucleic acids (2008) Biochem. Biophys. Res. Commun., 370, pp. 27-32
Harrison, S. C., Viral membrane fusion (2008) Nature Structural and Molecular Biology, 15 (7), pp. 690-698. , DOI 10. 1038/nsmb. 1456, PII NSMB1456
White, J. M., Delos, S. E., Brecher, M., Schornberg, K., Structures and mechanisms of viral membrane fusion proteins: Multiple variations on a common theme (2008) Critical Reviews in Biochemistry and Molecular Biology, 43 (3), pp. 189-219. , DOI 10. 1080/10409230802058320, PII 794225034
Arias, C. F., Romero, P., Alvarez, V., Lopez, S., Trypsin activation pathway of rotavirus infectivity (1996) Journal of Virology, 70 (9), pp. 5832-5839
Greber, U. F., Webster, P., Weber, J., Helenius, A., The role of the adenovirus protease in virus entry into cells (1996) EMBO Journal, 15 (8), pp. 1766-1777
, S., Alves, I. D., Marquant, R., Salgado, G. F., Rezaei, H., Lepault, J., Morellet, N., NMR structure of a viral peptide inserted in artificial membranes (2010) J. Biol. Chem., 285 (25), pp. 19409-19421. , "A View on the Early Steps OF THE BIRNAVIRUS ENTRY PROCESS
Harrison, S. C., Mechanism of membrane fusion by viral envelope proteins (2005) Advances in Virus Research, 64, pp. 231-261. , DOI 10. 1016/S0065-3527 (05) 64007-9, PII S0065352705640079, Virus Structure and Assembly
Lamb, R. A., Paterson, R. G., Jardetzky, T. S., Paramyxovirus membrane fusion: Lessons from the F and HN atomic structures (2006) Virology, 344 (1), pp. 30-37. , DOI 10. 1016/j. virol. 2005. 09. 007, PII S0042682205005684
Wilson, I. A., Skehel, J. J., Wiley, D. C., Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution (1981) Nature, 289 (5796), pp. 366-373
Yin, H. -S., Wen, X., Paterson, R. G., Lamb, R. A., Jardetzky, T. S., Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation (2006) Nature, 439 (7072), pp. 38-44. , DOI 10. 1038/nature04322
Schibli, D. J., Weissenhorn, W., Class I and class II viral fusion protein structures reveal similar principles in membrane fusion (2004) Molecular Membrane Biology, 21 (6), pp. 361-371. , DOI 10. 1080/09687860400017784
Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C., Harrison, S. C., The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution (1995) Nature, 375 (6529), pp. 291-298
Heldwein, E. E., Lou, H., Bender, F. C., Cohen, G. H., Eisenberg, R. J., Harrison, S. C., Crystal structure of glycoprotein B from herpes simplex virus 1 (2006) Science, 313 (5784), pp. 217-220. , DOI 10. 1126/science. 1126548
Greber, U. F., Willetts, M., Webster, P., Helenius, A., Stepwise dismantling of adenovirus 2 during entry into cells (1993) Cell, 75 (3), pp. 477-486. , DOI 10. 1016/0092-8674 (93) 90382-Z
Leopold, P. L., Ferris, B., Grinberg, I., Worgall, S., Hackett, N. R., Crystal, R. G., Fluorescent virions: Dynamic tracking of the pathway of adenoviral gene transfer vectors in living cells (1998) Human Gene Therapy, 9 (3), pp. 367-378
Henriques, S. T., Melo, M. N., Castanho, M. A. R. B., Cell-penetrating peptides and antimicrobial peptides: How different are they? (2006) Biochemical Journal, 399 (1), pp. 1-7. , DOI 10. 1042/BJ20061100
Henriques, S. T., Castanho, M. A. R. B., Translocation or membrane disintegration? Implication of peptide-membrane interactions in pep-1 activity (2008) Journal of Peptide Science, 14 (4), pp. 482-487. , DOI 10. 1002/psc. 1003
Funhoff, A. M., Van Nostrum, C. F., Lok, M. C., Fretz, M. M., Crommelin, D. J. A., Hennink, W. E., Poly (3-guanidinopropyl methacrylate): A novel cationic polymer for gene delivery (2004) Bioconjugate Chemistry, 15 (6), pp. 1212-1220. , DOI 10. 1021/bc049864q
Jiang, X., Lok, M. C., Hennink, W. E., Degradable-brushed pHEMA-pDMAEMA synthesized via ATRP and click chemistry for gene delivery (2007) Bioconjugate Chemistry, 18 (6), pp. 2077-2084. , DOI 10. 1021/bc0701186
Fretz, M. M., Mastrobattista, E., Koning, G. A., Jiskoot, W., Storm, G., Strategies for cytosolic delivery of liposomal macromolecules (2005) International Journal of Pharmaceutics, 298 (2), pp. 305-309. , DOI 10. 1016/j. ijpharm. 2005. 02. 040, PII S0378517305002474, Selected Contribution from the 5th European Workshop on Particulate Systems
Tu, Y., Kim, J. -S., A fusogenic segment of glycoprotein H from herpes simplex virus enhances transfection efficiency of cationic liposomes (2008) Journal of Gene Medicine, 10 (6), pp. 646-654. , DOI 10. 1002/jgm. 1184
Recent advances in the understanding of cellular and molecular mechanisms of the pathogenesis of several diseases offer the possibility to address novel molecular targets for an improved diagnosis and therapy. In fact, in order to fulfill their function, macromolecular drugs, reporter molecules, and imaging agents often require to be delivered into specific intracellular compartments, usually the cytoplasm or the nucleus. From a medical perspective, biological membranes represent a critical hindrance due to their barrier-like behaviour not easily circumvented by many pharmacologically-active molecules. Therefore, identifying strategies for membrane translocation is essential. Several technologies have been designed to improve cellular uptake of therapeutic molecules, including cell-penetrating peptides (CPPs). These peptides, which are able to efficiently translocate macromolecules through the plasma membrane, have attracted a lot of attention, and new translocating peptides are continuously described. In this review, we will focus on the viral derived peptides, and in particular those derived by viral entry proteins that may be useful as delivery vehicles due to their intrinsic properties of inducing membrane perturbation. 2012 Bentham Science Publishers
Vitiello M, Finamore E, Falanga A, Raieta K, Cantisani M, Galdiero F, Pedone C, Galdiero M, Galdiero S * Fusion in Coq(479 views) Lecture Notes In Computer Science (ISSN: 0302-9743, 0302-974335404636319783540463634, 0302-974335402975459783540297543), 2001; 2178LNCS: 583-596. Impact Factor:0.415 ViewExport to BibTeXExport to EndNote