Keywords: Delivery, Fusion, Hydrophobicity, Membranotropic Peptide, Viral Inhibition, Antivirus Agent, Doxorubicin, Liposome, Nanoparticle, Polystyrene, Protein Gh625, Unclassified Drug, Virus Fusion Protein, Virus Protein, Bilayer Membrane, Blood Brain Barrier, Cell Membrane Transport, Drug Delivery System, Drug Design, Herpes Simplex Virus 1, Human, In Vitro Study, In Vivo Study, Molecular Mechanics, Nonhuman, Review, Virus Entry, Virus Inhibition, Amino Acid Sequence, Cell Membrane Metabolism Virology, Herpes Simplex Metabolism Virology, Herpesvirus 1, Human Metabolism Physiology, Host-Pathogen Interactions, Models, Molecular Sequence Data, Peptides Chemistry Metabolism, Protein Conformation, Viral Envelope Proteins Chemistry Metabolism, Gh625 Peptide, Herpes Simplex Virus Type I, Virus Envelope Protein, Chemical Structure, Host Pathogen Interaction, Molecular Genetics,
Affiliations: *** IBB - CNR ***
Department of Pharmacy, University of Naples Federico II, Via Mezzocannone 16Naples, Italy
DFM Scarl, University of Naples Federico II, Via Mezzocannone 16Naples, Italy
Department of Experimental Medicine, II University of Naples, Via De Crecchio 7Naples, Italy
References: Craik, D.J., Fairlie, D.P., Liras, S., Price, D., The future of peptide-based drugs (2013) Chem. Biol. Drug Des., 81, pp. 136-14
Vlieghe, P., Lisowski, V., Martinez, J., Khrestchatisky, M., Synthetic therapeutic peptides: Science and market (2010) Drug Discov. Today, 15, pp. 40-56
Sato, A.K., Viswanathan, M., Kent, R.B., Wood, C.R., Therapeutic peptides: Technological advances driving peptides into development (2006) Curr. Opin. Biotechnol., 17, pp. 638-642
Yau, W.M., Wimley, W.C., Gawrisch, K., White, S.H., The preference of tryptophan for membrane interfaces (1998) Biochemistry, 37, pp. 14713-14718
Harris, F., Wallace, J., Phoenix, D.A., Use of hydrophobic moment plot methodology to aid the identification of oblique orientated α-helices (2000) Mol. Membr. Biol., 17, pp. 201-207
Joanne, P., Nicolas, P., El Amri, C., Antimicrobial peptides and viral fusion peptides: How different they are? (2009) Protein Pept. Lett., 16, pp. 743-750
Cruz, J., Ortiz, C., Guzman, F., Fernandez-Lafuente, R., Torres, R., Antimicrobial peptides: Promising compounds against pathogenic microorganisms (2014) Curr. Med. Chem., 21, pp. 2299-2321
Falanga, A., Cantisani, M., Pedone, C., Galdiero, S., Membrane fusion and fission: Enveloped viruses (2009) Protein Pept. Lett., 16, pp. 751-759
Wang, F., Wang, Y., Zhang, X., Zhang, W., Guo, S., Jin, F., Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery (2014) J. Control. Release, 174, pp. 126-136
Harrison, S.C., Mechanism of membrane fusion by viral envelope proteins (2005) Adv. Virus Res., 64, pp. 231-261
Wilson, I.A., Skehel, J.J., Wiley, D.C., Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution (1981) Nature, 289, pp. 366-373
Fass, D., Harrison, S.C., Kim, P.S., Retrovirus envelope domain at 1.7 angstrom resolution (1996) Nat. Struct. Biol., 3, pp. 465-469
Weissenhorn, W., Carfi, A., Lee, K.H., Skehel, J.J., Wiley, D.C., Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain (1998) Mol. Cell, 2, pp. 605-616
Yin, H.S., Wen, X., Paterson, R.G., Lamb, R.A., Jardetzky, T.S., Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation (2006) Nature, 439, pp. 38-44
Xu, Y., Liu, Y., Lou, Z., Qin, L., Li, X., Bai, Z., Pang, H., Rao, Z., Structural basis for coronavirus-mediated membrane fusion. Crystal structure of mouse hepatitis virus spike protein fusion core (2004) J. Biol. Chem., 279, pp. 30514-30522
Rey, F.A., Heinz, F.X., Mandl, C., Kunz, C., Harrison, S.C., The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution (1995) Nature, 375, pp. 291-298
Lescar, J., Roussel, A., Wien, M.W., Navaza, J., Fuller, S.D., Wengler, G., Rey, F.A., The fusion glycoprotein shell of Semliki Forest virus: An icosahedral assembly primed for fusogenic activation at endosomal pH (2001) Cell, 105, pp. 137-148
Backovic, M., Jardetzky, T., Class III viral membrane fusion proteins (2011) Cell Fusion in Health and Disease, pp. 91-101. , T. Dittmar, K.S. Zänker, Springer Netherlands
White, S.H., Wimley, W.C., Hydrophobic interactions of peptides with membrane interfaces (1998) Biochim. Biophys. Acta Rev. Biomembr., 1376, pp. 339-352
Wimley, W.C., White, S.H., Experimentally determined hydrophobicity scale for proteins at membrane interfaces (1996) Nat. Struct. Biol., 3, pp. 842-848
Wimley, W.C., Hristova, K., Ladokhin, A.S., Silvestro, L., Axelsen, P.H., White, S.H., Folding of β-sheet membrane proteins: A hydrophobic hexapeptide model (1998) J. Mol. Biol., 277, pp. 1091-1110
Ladokhin, A.S., White, S.H., Folding of amphipathic α-helices on membranes: Energetics of helix formation by melittin (1999) J. Mol. Biol., 285, pp. 1363-1369
Segrest, J.P., De Loof, H., Dohlman, J.G., Brouillette, C.G., Anantharamaiah, G.M., Amphipathic helix motif: Classes and properties (1990) Proteins Struct. Funct. Bioinforma., 8, pp. 103-117
Han, X., Tamm, L.K., PH-dependent self-association of influenza hemagglutinin fusion peptides in lipid bilayers (2000) J. Mol. Biol., 304, pp. 953-965
Sáez-Cirión, A., Nieva, J.L., Conformational transitions of membrane-bound HIV-1 fusion peptide (2002) Biochim. Biophys. Acta Biomembr., 1564, pp. 57-65
Han, X., Bushweller, J.H., Cafiso, D.S., Tamm, L.K., Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin (2001) Nat. Struct. Biol., 8, pp. 715-720
Tamm, L.K., Han, X., Li, Y., Lai, A.L., Structure and function of membrane fusion peptides (2002) Biopolym. Pept. Sci. Sect., 66, pp. 249-260
Agopian, A., Castano, S., Structure and orientation study of Ebola fusion peptide inserted in lipid membrane models (2014) Biochim. Biophys. Acta Biomembr., 1838, pp. 117-126
Apellaniz, B., Huarte, N., Largo, E., Nieva, J.L., The three lives of viral fusion peptides (2014) Chem. Phys. Lipids, 181, pp. 40-55
Lai, A.L., Moorthy, A.E., Li, Y., Tamm, L.K., Fusion activity of HIV gp41 fusion domain is related to its secondary structure and depth of membrane insertion in a cholesterol-dependent fashion (2012) J. Mol. Biol., 418, pp. 3-15
Larsson, P., Kasson, P.M., Lipid tail protrusion in simulations predicts fusogenic activity of influenza fusion peptide mutants and conformational models (2013) PLoS Comput. Biol., 9, p. 1002950
Kozlov, M.M., McMahon, H.T., Chernomordik, L.V., Protein-driven membrane stresses in fusion and fission (2010) Trends Biochem. Sci., 35, pp. 699-706
Peisajovich, S.G., Samuel, O., Shai, Y., Paramyxovirus F1 protein has two fusion peptides: Implications for the mechanism of membrane fusion (2000) J. Mol. Biol., 296, pp. 1353-1365
Perez-Berna, A.J., Guillen, J., Moreno, M.R., Bernabeu, A., Pabst, G., Laggner, P., Villalain, J., Identification of the membrane-active regions of hepatitis C virus p7 protein: Biophysical characterization of the loop region (2008) J. Biol. Chem., 283, pp. 8089-8101
Nemesio, H., Palomares-Jerez, F., Villalain, J., The membrane-active regions of the dengue virus proteins C and e (2011) Biochim. Biophys. Acta, 1808, pp. 2390-2402
Galdiero, S., Falanga, A., Vitiello, M., Browne, H., Pedone, C., Galdiero, M., Fusogenic domains in herpes simplex virus type 1 glycoprotein H (2005) J. Biol. Chem., 280, pp. 28632-28643
Galdiero, S., Vitiello, M., D'Isanto, M., Falanga, A., Cantisani, M., Browne, H., Pedone, C., Galdiero, M., The identification and characterization of fusogenic domains in herpes virus glycoprotein B molecules (2008) Chembiochem, 9, pp. 758-767
Lorizate, M., Huarte, N., Saez-Cirion, A., Nieva, J.L., Interfacial pre-transmembrane domains in viral proteins promoting membrane fusion and fission (2008) Biochim. Biophys. Acta, 1778, pp. 1624-1639
D'Errico, G., D'Ursi, A.M., Marsh, D., Interaction of a peptide derived from glycoprotein gp36 of feline immunodeficiency virus and its lipoylated analogue with phospholipid membranes (2008) Biochemistry, 47, pp. 5317-5327
Badani, H., Garry, R.F., Wimley, W.C., Peptide entry inhibitors of enveloped viruses: The importance of interfacial hydrophobicity (2014) Biochim. Biophys. Acta Biomembr, 1838, pp. 2180-2197
Rapaport, D., Ovadia, M., Shai, Y., A synthetic peptide corresponding to a conserved heptad repeat domain is a potent inhibitor of Sendai virus-cell fusion: An emerging similarity with functional domains of other viruses (1995) EMBO J., 14, pp. 5524-5531
Xu, Y., Rahman, N.A., Othman, R.B., Hu, P., Huang, M., Computational identification of self-inhibitory peptides from envelope proteins (2012) Proteins, 80, pp. 2154-2168
Chang, D.K., Cheng, S.F., Lin, C.H., Kantchev, E.B., Wu, C.W., Self-association of glutamic acid-rich fusion peptide analogs of influenza hemagglutinin in the membrane-mimic environments: Effects of positional difference of glutamic acids on side chain ionization constant and intra- and inter-peptide interactions deduced from NMR and gel electrophoresis measurements (2005) Biochim. Biophys. Acta, 1712, pp. 37-51
Lau, W.L., Ege, D.S., Lear, J.D., Hammer, D.A., Degrado, W.F., Oligomerization of fusogenic peptides promotes membrane fusion by enhancing membrane destabilization (2004) Biophys. J., 86, pp. 272-284
Kliger, Y., Aharoni, A., Rapaport, D., Jones, P., Blumenthal, R., Shai, Y., Fusion peptides derived from the HIV type 1 glycoprotein 41 associate within phospholipid membranes and inhibit cell-cell fusion. Structure-function study (1997) J. Biol. Chem., 272, pp. 13496-13505
Pritsker, M., Jones, P., Blumenthal, R., Shai, Y., A synthetic all D-amino acid peptide corresponding to the N-terminal sequence of HIV-1 gp41 recognizes the wild-type fusion peptide in the membrane and inhibits HIV-1 envelope glycoprotein-mediated cell fusion (1998) Proc. Natl. Acad. Sci. U. S. A., 95, pp. 7287-7292
Li, Y., Han, X., Tamm, L.K., Thermodynamics of fusion peptide-membrane interactions (2003) Biochemistry, 42, pp. 7245-7251
Forssmann, W.G., The, Y.H., Stoll, M., Adermann, K., Albrecht, U., Tillmann, H.C., Barlos, K., Schmidt, R.E., Short-term monotherapy in HIV-infected patients with a virus entry inhibitor against the gp41 fusion peptide (2010) Sci. Transl. Med., 2, p. 63re63
Münch, J., Ständker, L., Adermann, K., Schulz, A., Schindler, M., Chinnadurai, R., Pöhlmann, S., Kirchhoff, F., Discovery and optimization of a natural HIV-1 entry inhibitor targeting the gp41 fusion peptide (2007) Cell, 129, pp. 263-275
Torchilin, V.P., Multifunctional nanocarriers (2006) Adv. Drug Deliv. Rev., 58, pp. 1532-1555
Bareford, L.M., Swaan, P.W., Endocytic mechanisms for targeted drug delivery (2007) Adv. Drug Deliv. Rev., 59, pp. 748-758
He, J., Kauffman, W.B., Fuselier, T., Naveen, S.K., Voss, T.G., Hristova, K., Wimley, W.C., Direct cytosolic delivery of polar cargo to cells by spontaneous membrane-translocating peptides (2013) J. Biol. Chem., 288, pp. 29974-29986
Guarnieri, D., Falanga, A., Muscetti, O., Tarallo, R., Fusco, S., Galdiero, M., Galdiero, S., Netti, P.A., Shuttle-mediated nanoparticle delivery to the blood-brain barrier (2013) Small, 9, pp. 853-862
Almeida, P.F., Membrane-active peptides: Binding, translocation, and flux in lipid vesicles (2014) Biochim. Biophys. Acta, 1838, pp. 2216-2227
Heitz, F., Morris, M.C., Divita, G., Twenty years of cell-penetrating peptides: From molecular mechanisms to therapeutics (2009) Br. J. Pharmacol., 157, pp. 195-206
Vivès, E., Brodin, P., Lebleu, B., Truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane (1997) J. Biol. Chem., 272, pp. 16010-16017
Angeles-Boza, A.M., Erazo-Oliveras, A., Lee, Y.-J., Pellois, J.-P., Generation of endosomolytic reagents by branching of cell-penetrating peptides (2010) Bioconjug. Chem., 21, pp. 2164-2167
Morris, M.C., Chaloin, L., Mery, J., Heitz, F., Divita, G., A novel potent strategy for gene delivery using a single peptide vector as a carrier (1999) Nucleic Acids Res., 27, pp. 3510-3517
Morris, M.C., Vidal, P., Chaloin, L., Heitz, F., Divita, G., A new peptide vector for efficient delivery of oligonucleotides into mammalian cells (1997) Nucleic Acids Res., 25, pp. 2730-2736
Gallaher, W.R., Detection of a fusion peptide sequence in the transmembrane protein of human immunodeficiency virus (1987) Cell, 50, pp. 327-328
Kalderon, D., Smith, A.E., In vitro mutagenesis of a putative DNA binding domain of SV40 large-T (1984) Virology, 139, pp. 109-137
Delboy, M.G., Patterson, J.L., Hollander, A.M., Nicola, A.V., Nectin-2-mediated entry of a syncytial strain of herpes simplex virus via pH-independent fusion with the plasma membrane of Chinese hamster ovary cells (2006) Virol. J., 3, p. 105
Roller, D.G., Dollery, S.J., Doyle, J.L., Nicola, A.V., Structure-function analysis of herpes simplex virus glycoprotein B with fusion-from-without activity (2008) Virology, 382, pp. 207-216
Arii, J., Uema, M., Morimoto, T., Sagara, H., Akashi, H., Ono, E., Arase, H., Kawaguchi, Y., Entry of herpes simplex virus 1 and other alphaherpesviruses via the paired immunoglobulin-like type 2 receptor alpha (2009) J. Virol., 83, pp. 4520-4527
Milne, R.S., Nicola, A.V., Whitbeck, J.C., Eisenberg, R.J., Cohen, G.H., Glycoprotein D receptor-dependent, low-pH-independent endocytic entry of herpes simplex virus type 1 (2005) J. Virol., 79, pp. 6655-6663
Connolly, S.A., Jackson, J.O., Jardetzky, T.S., Longnecker, R., Fusing structure and function: A structural view of the herpesvirus entry machinery (2011) Nat. Rev. Microbiol., 9, pp. 369-381
Turner, A., Bruun, B., Minson, T., Browne, H., Glycoproteins gB, gD, and gHgL of herpes simplex virus type 1 are necessary and sufficient to mediate membrane fusion in a Cos cell transfection system (1998) J. Virol., 72, pp. 873-875
Farnsworth, A., Wisner, T.W., Webb, M., Roller, R., Cohen, G., Eisenberg, R., Johnson, D.C., Herpes simplex virus glycoproteins gB and gH function in fusion between the virion envelope and the outer nuclear membrane (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 10187-10192
Falanga, A., Tarallo, R., Vitiello, G., Vitiello, M., Perillo, E., Cantisani, M., D'Errico, G., Galdiero, S., Biophysical characterization and membrane interaction of the two fusion loops of glycoprotein B from herpes simplex type i virus (2012) PLoS One, 7, p. 32186
Galdiero, S., Russo, L., Falanga, A., Cantisani, M., Vitiello, M., Fattorusso, R., Malgieri, G., Isernia, C., Structure and orientation of the gH625-644 membrane interacting region of herpes simplex virus type 1 in a membrane mimetic system (2012) Biochemistry, 51, pp. 3121-3128
Chowdary, T.K., Cairns, T.M., Atanasiu, D., Cohen, G.H., Eisenberg, R.J., Heldwein, E.E., Crystal structure of the conserved herpesvirus fusion regulator complex gH-gL (2010) Nat. Struct. Mol. Biol., 17, pp. 882-888
Matsuura, H., Kirschner, A.N., Longnecker, R., Jardetzky, T.S., Crystal structure of the Epstein-Barr virus (EBV) glycoprotein H/glycoprotein L (gH/gL) complex (2010) Proc. Natl. Acad. Sci. U. S. A., 107, pp. 22641-22646
Heldwein, E.E., Lou, H., Bender, F.C., Cohen, G.H., Eisenberg, R.J., Harrison, S.C., Crystal structure of glycoprotein B from herpes simplex virus 1 (2006) Science, 313, pp. 217-220
Connolly, S.A., Longnecker, R., Residues within the C-terminal arm of the herpes simplex virus 1 glycoprotein B ectodomain contribute to its refolding during the fusion step of virus entry (2012) J. Virol., 86, pp. 6386-6393
Cantisani, M., Falanga, A., Incoronato, N., Russo, L., De Simone, A., Morelli, G., Berisio, R., Galdiero, S., Conformational modifications of gB from herpes simplex virus type 1 analyzed by synthetic peptides (2013) J. Med. Chem., 56, pp. 8366-8376
Backovic, M., Longnecker, R., Jardetzky, T.S., Structure of a trimeric variant of the Epstein-Barr virus glycoprotein B (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 2880-2885
Roche, S., Bressanelli, S., Rey, F.A., Gaudin, Y., Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G (2006) Science, 313, pp. 187-191
Kadlec, J., Loureiro, S., Abrescia, N.G., Stuart, D.I., Jones, I.M., The postfusion structure of baculovirus gp64 supports a unified view of viral fusion machines (2008) Nat. Struct. Mol. Biol., 15, pp. 1024-1030
Akkarawongsa, R., Pocaro, N.E., Case, G., Kolb, A.W., Brandt, C.R., Multiple peptides homologous to herpes simplex virus type 1 glycoprotein B inhibit viral infection (2009) Antimicrob. Agents Chemother., 53, pp. 987-996
Vitiello, G., Falanga, A., Galdiero, M., Marsh, D., Galdiero, S., D'Errico, G., Lipid composition modulates the interaction of peptides deriving from herpes simplex virus type i glycoproteins B and H with biomembranes (2011) Biochim. Biophys. Acta, 1808, pp. 2517-2526
Krishnan, A., Verma, S.K., Mani, P., Gupta, R., Kundu, S., Sarkar, D.P., A histidine switch in hemagglutinin-neuraminidase triggers paramyxovirus-cell membrane fusion (2009) J. Virol., 83, pp. 1727-1741
Chanel-Vos, C., Kielian, M., A conserved histidine in the ij loop of the Semliki Forest virus E1 protein plays an important role in membrane fusion (2004) J. Virol., 78, pp. 13543-13552
Tarallo, R., Carberry, T.P., Falanga, A., Vitiello, M., Galdiero, S., Galdiero, M., Weck, M., Dendrimers functionalized with membrane-interacting peptides for viral inhibition (2013) Int. J. Nanomedicine, 8, pp. 521-534
Tu, Y., Kim, J.S., A fusogenic segment of glycoprotein H from herpes simplex virus enhances transfection efficiency of cationic liposomes (2008) J. Gene Med., 10, pp. 646-654
Tarallo, R., Accardo, A., Falanga, A., Guarnieri, D., Vitiello, G., Netti, P., D'Errico, G., Galdiero, S., Clickable functionalization of liposomes with the gH625 peptide from Herpes simplex virus type i for intracellular drug delivery (2011) Chemistry, 17, pp. 12659-12668
Carberry, T.P., Tarallo, R., Falanga, A., Finamore, E., Galdiero, M., Weck, M., Galdiero, S., Dendrimer functionalization with a membrane-interacting domain of herpes simplex virus type 1: Towards intracellular delivery (2012) Chemistry, 18, pp. 13678-13685
Smaldone, G., Falanga, A., Capasso, D., Guarnieri, D., Correale, S., Galdiero, M., Netti, P.A., Pedone, E., GH625 is a viral derived peptide for effective delivery of intrinsically disordered proteins (2013) Int. J. Nanomedicine, 8, pp. 2555-2565
Pinaud, F., Clarke, S., Sittner, A., Dahan, M., Probing cellular events, one quantum dot at a time (2010) Nat. Methods, 7, pp. 275-285
Medintz, I.L., Pons, T., Delehanty, J.B., Susumu, K., Brunel, F.M., Dawson, P.E., Mattoussi, H., Intracellular delivery of quantum dot-protein cargos mediated by cell penetrating peptides (2008) Bioconjug. Chem., 19, pp. 1785-1795
Lee, H., Kim, I.K., Park, T.G., Intracellular trafficking and unpacking of siRNA/quantum dot-PEI complexes modified with and without cell penetrating peptide: Confocal and flow cytometric FRET analysis (2010) Bioconjug. Chem., 21, pp. 289-295
Delehanty, J.B., Bradburne, C.E., Susumu, K., Boeneman, K., Mei, B.C., Farrell, D., Blanco-Canosa, J.B., Medintz, I.L., Spatiotemporal multicolor labeling of individual cells using peptide-functionalized quantum dots and mixed delivery techniques (2011) J. Am. Chem. Soc., 133, pp. 10482-10489
Cukierman, E., Khan, D.R., The benefits and challenges associated with the use of drug delivery systems in cancer therapy (2010) Biochem. Pharmacol., 80, pp. 762-770
Lee, C.C., Mackay, J.A., Fréchet, J.M.J., Szoka, F.C., Designing dendrimers for biological applications (2005) Nat. Biotechnol., 23, pp. 1517-1526
Gillies, E.R., Frechet, J.M., Dendrimers and dendritic polymers in drug delivery (2005) Drug Discov. Today, 10, pp. 35-43
Gunaseelan, S., Gunaseelan, K., Deshmukh, M., Zhang, X., Sinko, P.J., Surface modifications of nanocarriers for effective intracellular delivery of anti-HIV drugs (2010) Adv. Drug Deliv. Rev., 62, pp. 518-531
Najlah, M., D'Emanuele, A., Crossing cellular barriers using dendrimer nanotechnologies (2006) Curr. Opin. Pharmacol., 6, pp. 522-527
Seib, F.P., Jones, A.T., Duncan, R., Comparison of the endocytic properties of linear and branched PEIs, and cationic PAMAM dendrimers in B16f10 melanoma cells (2007) J. Control. Release, 117, pp. 291-300
Kang, H., Delong, R., Fisher, M.H., Juliano, R.L., Tat-conjugated PAMAM dendrimers as delivery agents for antisense and siRNA oligonucleotides (2005) Pharm. Res., 22, pp. 2099-2106
Lu, C.T., Zhao, Y.Z., Wong, H.L., Cai, J., Peng, L., Tian, X.Q., Current approaches to enhance CNS delivery of drugs across the brain barriers (2014) Int. J. Nanomedicine, 9, pp. 2241-2257
Abbott, N.J., Ronnback, L., Hansson, E., Astrocyte-endothelial interactions at the blood-brain barrier (2006) Nat. Rev. Neurosci., 7, pp. 41-53
Mahajan, S.D., Law, W.C., Aalinkeel, R., Reynolds, J., Nair, B.B., Yong, K.T., Roy, I., Schwartz, S.A., Nanoparticle-mediated targeted delivery of antiretrovirals to the brain (2012) Methods Enzymol., 509, pp. 41-60
Jain, K.K., Nanobiotechnology-based strategies for crossing the blood-brain barrier (2012) Nanomedicine (Lond.), 7, pp. 1225-1233
Orive, G., Ali, O.A., Anitua, E., Pedraz, J.L., Emerich, D.F., Biomaterial-based technologies for brain anti-cancer therapeutics and imaging (2010) Biochim. Biophys. Acta, 1806, pp. 96-107
Qiao, R., Jia, Q., Huwel, S., Xia, R., Liu, T., Gao, F., Galla, H.J., Gao, M., Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier (2012) ACS Nano, 6, pp. 3304-3310
Valiante, S., Falanga, A., Cigliano, L., Iachetta, G., Busiello, R.A., La Marca, V., Galdiero, M., Galdiero, S., (2014) The Peptide gH625 Enters into Neuron and Astrocyte Cell Lines and Crosses the Blood Brain Barrier in Rats, , (submitted for publication)
Fawell, S., Seery, J., Daikh, Y., Moore, C., Chen, L.L., Pepinsky, B., Barsoum, J., Tat-mediated delivery of heterologous proteins into cells (1994) Proc. Natl. Acad. Sci., 91, pp. 664-668
Schutze-Redelmeier, M.P., Gournier, H., Garcia-Pons, F., Moussa, M., Joliot, A.H., Volovitch, M., Prochiantz, A., Lemonnier, F.A., Introduction of exogenous antigens into the MHC class i processing and presentation pathway by Drosophila antennapedia homeodomain primes cytotoxic T cells in vivo (1996) J. Immunol., 157, pp. 650-655
Borlongan, C.V., Emerich, D.F., Facilitation of drug entry into the CNS via transient permeation of blood brain barrier: Laboratory and preliminary clinical evidence from bradykinin receptor agonist, Cereport (2003) Brain Res. Bull., 60, pp. 297-306
Patel, M.M., Goyal, B.R., Bhadada, S.V., Bhatt, J.S., Amin, A.F., Getting into the brain: Approaches to enhance brain drug delivery (2009) CNS Drugs, 23, pp. 35-58
Craik, D. J., Fairlie, D. P., Liras, S., Price, D., The future of peptide-based drugs (2013) Chem. Biol. Drug Des., 81, pp. 136-14
Sato, A. K., Viswanathan, M., Kent, R. B., Wood, C. R., Therapeutic peptides: Technological advances driving peptides into development (2006) Curr. Opin. Biotechnol., 17, pp. 638-642
Yau, W. M., Wimley, W. C., Gawrisch, K., White, S. H., The preference of tryptophan for membrane interfaces (1998) Biochemistry, 37, pp. 14713-14718
Harrison, S. C., Mechanism of membrane fusion by viral envelope proteins (2005) Adv. Virus Res., 64, pp. 231-261
Harrison, S. C., Viral membrane fusion (2008) Nat. Struct. Mol. Biol., 15, pp. 690-698
Wilson, I. A., Skehel, J. J., Wiley, D. C., Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution (1981) Nature, 289, pp. 366-373
Yin, H. S., Wen, X., Paterson, R. G., Lamb, R. A., Jardetzky, T. S., Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation (2006) Nature, 439, pp. 38-44
Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C., Harrison, S. C., The envelope glycoprotein from tick-borne encephalitis virus at 2 resolution (1995) Nature, 375, pp. 291-298
White, S. H., Wimley, W. C., Hydrophobic interactions of peptides with membrane interfaces (1998) Biochim. Biophys. Acta Rev. Biomembr., 1376, pp. 339-352
Wimley, W. C., White, S. H., Experimentally determined hydrophobicity scale for proteins at membrane interfaces (1996) Nat. Struct. Biol., 3, pp. 842-848
Wimley, W. C., Hristova, K., Ladokhin, A. S., Silvestro, L., Axelsen, P. H., White, S. H., Folding of -sheet membrane proteins: A hydrophobic hexapeptide model (1998) J. Mol. Biol., 277, pp. 1091-1110
Ladokhin, A. S., White, S. H., Folding of amphipathic -helices on membranes: Energetics of helix formation by melittin (1999) J. Mol. Biol., 285, pp. 1363-1369
Segrest, J. P., De Loof, H., Dohlman, J. G., Brouillette, C. G., Anantharamaiah, G. M., Amphipathic helix motif: Classes and properties (1990) Proteins Struct. Funct. Bioinforma., 8, pp. 103-117
Han, X., Tamm, L. K., PH-dependent self-association of influenza hemagglutinin fusion peptides in lipid bilayers (2000) J. Mol. Biol., 304, pp. 953-965
S ez-Ciri n, A., Nieva, J. L., Conformational transitions of membrane-bound HIV-1 fusion peptide (2002) Biochim. Biophys. Acta Biomembr., 1564, pp. 57-65
Tamm, L. K., Han, X., Li, Y., Lai, A. L., Structure and function of membrane fusion peptides (2002) Biopolym. Pept. Sci. Sect., 66, pp. 249-260
Lai, A. L., Moorthy, A. E., Li, Y., Tamm, L. K., Fusion activity of HIV gp41 fusion domain is related to its secondary structure and depth of membrane insertion in a cholesterol-dependent fashion (2012) J. Mol. Biol., 418, pp. 3-15
Kozlov, M. M., McMahon, H. T., Chernomordik, L. V., Protein-driven membrane stresses in fusion and fission (2010) Trends Biochem. Sci., 35, pp. 699-706
Peisajovich, S. G., Samuel, O., Shai, Y., Paramyxovirus F1 protein has two fusion peptides: Implications for the mechanism of membrane fusion (2000) J. Mol. Biol., 296, pp. 1353-1365
Perez-Berna, A. J., Guillen, J., Moreno, M. R., Bernabeu, A., Pabst, G., Laggner, P., Villalain, J., Identification of the membrane-active regions of hepatitis C virus p7 protein: Biophysical characterization of the loop region (2008) J. Biol. Chem., 283, pp. 8089-8101
Xu, Y., Rahman, N. A., Othman, R. B., Hu, P., Huang, M., Computational identification of self-inhibitory peptides from envelope proteins (2012) Proteins, 80, pp. 2154-2168
Chang, D. K., Cheng, S. F., Lin, C. H., Kantchev, E. B., Wu, C. W., Self-association of glutamic acid-rich fusion peptide analogs of influenza hemagglutinin in the membrane-mimic environments: Effects of positional difference of glutamic acids on side chain ionization constant and intra- and inter-peptide interactions deduced from NMR and gel electrophoresis measurements (2005) Biochim. Biophys. Acta, 1712, pp. 37-51
Lau, W. L., Ege, D. S., Lear, J. D., Hammer, D. A., Degrado, W. F., Oligomerization of fusogenic peptides promotes membrane fusion by enhancing membrane destabilization (2004) Biophys. J., 86, pp. 272-284
Forssmann, W. G., The, Y. H., Stoll, M., Adermann, K., Albrecht, U., Tillmann, H. C., Barlos, K., Schmidt, R. E., Short-term monotherapy in HIV-infected patients with a virus entry inhibitor against the gp41 fusion peptide (2010) Sci. Transl. Med., 2, p. 63re63
M nch, J., St ndker, L., Adermann, K., Schulz, A., Schindler, M., Chinnadurai, R., P hlmann, S., Kirchhoff, F., Discovery and optimization of a natural HIV-1 entry inhibitor targeting the gp41 fusion peptide (2007) Cell, 129, pp. 263-275
Torchilin, V. P., Multifunctional nanocarriers (2006) Adv. Drug Deliv. Rev., 58, pp. 1532-1555
Bareford, L. M., Swaan, P. W., Endocytic mechanisms for targeted drug delivery (2007) Adv. Drug Deliv. Rev., 59, pp. 748-758
Almeida, P. F., Membrane-active peptides: Binding, translocation, and flux in lipid vesicles (2014) Biochim. Biophys. Acta, 1838, pp. 2216-2227
Viv s, E., Brodin, P., Lebleu, B., Truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane (1997) J. Biol. Chem., 272, pp. 16010-16017
Angeles-Boza, A. M., Erazo-Oliveras, A., Lee, Y. -J., Pellois, J. -P., Generation of endosomolytic reagents by branching of cell-penetrating peptides (2010) Bioconjug. Chem., 21, pp. 2164-2167
Morris, M. C., Chaloin, L., Mery, J., Heitz, F., Divita, G., A novel potent strategy for gene delivery using a single peptide vector as a carrier (1999) Nucleic Acids Res., 27, pp. 3510-3517
Morris, M. C., Vidal, P., Chaloin, L., Heitz, F., Divita, G., A new peptide vector for efficient delivery of oligonucleotides into mammalian cells (1997) Nucleic Acids Res., 25, pp. 2730-2736
Gallaher, W. R., Detection of a fusion peptide sequence in the transmembrane protein of human immunodeficiency virus (1987) Cell, 50, pp. 327-328
Delboy, M. G., Patterson, J. L., Hollander, A. M., Nicola, A. V., Nectin-2-mediated entry of a syncytial strain of herpes simplex virus via pH-independent fusion with the plasma membrane of Chinese hamster ovary cells (2006) Virol. J., 3, p. 105
Roller, D. G., Dollery, S. J., Doyle, J. L., Nicola, A. V., Structure-function analysis of herpes simplex virus glycoprotein B with fusion-from-without activity (2008) Virology, 382, pp. 207-216
Milne, R. S., Nicola, A. V., Whitbeck, J. C., Eisenberg, R. J., Cohen, G. H., Glycoprotein D receptor-dependent, low-pH-independent endocytic entry of herpes simplex virus type 1 (2005) J. Virol., 79, pp. 6655-6663
Connolly, S. A., Jackson, J. O., Jardetzky, T. S., Longnecker, R., Fusing structure and function: A structural view of the herpesvirus entry machinery (2011) Nat. Rev. Microbiol., 9, pp. 369-381
Chowdary, T. K., Cairns, T. M., Atanasiu, D., Cohen, G. H., Eisenberg, R. J., Heldwein, E. E., Crystal structure of the conserved herpesvirus fusion regulator complex gH-gL (2010) Nat. Struct. Mol. Biol., 17, pp. 882-888
Heldwein, E. E., Lou, H., Bender, F. C., Cohen, G. H., Eisenberg, R. J., Harrison, S. C., Crystal structure of glycoprotein B from herpes simplex virus 1 (2006) Science, 313, pp. 217-220
Connolly, S. A., Longnecker, R., Residues within the C-terminal arm of the herpes simplex virus 1 glycoprotein B ectodomain contribute to its refolding during the fusion step of virus entry (2012) J. Virol., 86, pp. 6386-6393
Tu, Y., Kim, J. S., A fusogenic segment of glycoprotein H from herpes simplex virus enhances transfection efficiency of cationic liposomes (2008) J. Gene Med., 10, pp. 646-654
Carberry, T. P., Tarallo, R., Falanga, A., Finamore, E., Galdiero, M., Weck, M., Galdiero, S., Dendrimer functionalization with a membrane-interacting domain of herpes simplex virus type 1: Towards intracellular delivery (2012) Chemistry, 18, pp. 13678-13685
Medintz, I. L., Pons, T., Delehanty, J. B., Susumu, K., Brunel, F. M., Dawson, P. E., Mattoussi, H., Intracellular delivery of quantum dot-protein cargos mediated by cell penetrating peptides (2008) Bioconjug. Chem., 19, pp. 1785-1795
Lee, H., Kim, I. K., Park, T. G., Intracellular trafficking and unpacking of siRNA/quantum dot-PEI complexes modified with and without cell penetrating peptide: Confocal and flow cytometric FRET analysis (2010) Bioconjug. Chem., 21, pp. 289-295
Delehanty, J. B., Bradburne, C. E., Susumu, K., Boeneman, K., Mei, B. C., Farrell, D., Blanco-Canosa, J. B., Medintz, I. L., Spatiotemporal multicolor labeling of individual cells using peptide-functionalized quantum dots and mixed delivery techniques (2011) J. Am. Chem. Soc., 133, pp. 10482-10489
Newkome, G. R., Moorefield, C. N., V gtle, F., (2001) Dendrimers and Dendrons: Concepts, Synthesis, Applications, , Wiley-VCH Weinheim
Lee, C. C., Mackay, J. A., Fr chet, J. M. J., Szoka, F. C., Designing dendrimers for biological applications (2005) Nat. Biotechnol., 23, pp. 1517-1526
Gillies, E. R., Frechet, J. M., Dendrimers and dendritic polymers in drug delivery (2005) Drug Discov. Today, 10, pp. 35-43
Seib, F. P., Jones, A. T., Duncan, R., Comparison of the endocytic properties of linear and branched PEIs, and cationic PAMAM dendrimers in B16f10 melanoma cells (2007) J. Control. Release, 117, pp. 291-300
Lu, C. T., Zhao, Y. Z., Wong, H. L., Cai, J., Peng, L., Tian, X. Q., Current approaches to enhance CNS delivery of drugs across the brain barriers (2014) Int. J. Nanomedicine, 9, pp. 2241-2257
Abbott, N. J., Ronnback, L., Hansson, E., Astrocyte-endothelial interactions at the blood-brain barrier (2006) Nat. Rev. Neurosci., 7, pp. 41-53
Mahajan, S. D., Law, W. C., Aalinkeel, R., Reynolds, J., Nair, B. B., Yong, K. T., Roy, I., Schwartz, S. A., Nanoparticle-mediated targeted delivery of antiretrovirals to the brain (2012) Methods Enzymol., 509, pp. 41-60
Jain, K. K., Nanobiotechnology-based strategies for crossing the blood-brain barrier (2012) Nanomedicine (Lond.), 7, pp. 1225-1233
Orive, G., Ali, O. A., Anitua, E., Pedraz, J. L., Emerich, D. F., Biomaterial-based technologies for brain anti-cancer therapeutics and imaging (2010) Biochim. Biophys. Acta, 1806, pp. 96-107
Borlongan, C. V., Emerich, D. F., Facilitation of drug entry into the CNS via transient permeation of blood brain barrier: Laboratory and preliminary clinical evidence from bradykinin receptor agonist, Cereport (2003) Brain Res. Bull., 60, pp. 297-306
Patel, M. M., Goyal, B. R., Bhadada, S. V., Bhatt, J. S., Amin, A. F., Getting into the brain: Approaches to enhance brain drug delivery (2009) CNS Drugs, 23, pp. 35-58
gH625: A milestone in understanding the many roles of membranotropic peptides
Here, we review the current knowledge about viral derived membranotropic peptides, and we discuss how they may be used for many therapeutic applications. While they have been initially discovered in viral fusion proteins and have been involved in the mechanism of viral entry, it is now clear that their features and their mode of interaction with membrane bilayers can be exploited to design viral inhibitors as well as to favor delivery of cargos across the cell membrane and across the blood-brain barrier. The peptide gH625 has been extensively used for all these purposes and provides a significant contribution to the field. We describe the roles of this sequence in order to close the gap between the many functions that are now emerging for membranotropic peptides. (C) 2014 Elsevier B.V. All rights reserved.
gH625: A milestone in understanding the many roles of membranotropic peptides
No results.
gH625: A milestone in understanding the many roles of membranotropic peptides