The role of copper(II) in the aggregation of human amylin(492 views) Sinopoli A, Magri A, Milardi D, Pappalardo M, Pucci P, Flagiello A, Titman JJ, Nicoletti VG, Caruso G, Pappalardo G, GrassoG
Keywords: Amylin, Chymotrypsin, Copper Ion, Elastase, Subtilisin, Thioflavine, Article, Carbon Nuclear Magnetic Resonance, Cell Viability, Circular Dichroism, Conformational Transition, Controlled Study, Deuterium Hydrogen Exchange, High Performance Liquid Chromatography, Human, Human Cell, Human Cell Culture, In Vitro Study, Mass Spectrometry, Molecular Weight, Mtt Assay, Protein Conformation, Protein Degradation, Protein Secondary Structure, Amino Acid Sequence, Cell Line, Tumor, Cell Survival, Metabolism, Islet Amyloid Polypeptide, Chemistry, Models, Molecular Sequence Data, Protein Aggregates, Protein Structure, Proteolysis,
Affiliations: *** IBB - CNR ***
Dottorato Internazionale in Biomedicina Traslazionale, Universita degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.,
Istituto Biostrutture e Bioimmagini, CNR, Via P. Gaifami 18Catania, Italy
Dipartimento di Scienze Chimiche, Università Degli Studi di Catania, Viale Andrea Doria 6Catania, Italy
School of Chemistry, University of Nottingham, University ParkNottingham, United Kingdom
Istituto Nazionale di Biostrutture e Biosistemi (INBB) - Sez. Biomolecole, Consorzio Interuniversitario, Viale medaglie d'Oro 305Rome, Italy
References: Giuffrida, M.L., Caraci, F., Pignataro, B., Cataldo, S., De Bona, P., Bruno, V., Molinaro, G., Copani, A., Beta-amyloid monomers are neuroprotective (2009) J. Neurosci., 29, pp. 10582-1058
De Toma, A.S., Salamekh, S., Ramamoorthy, A., Lim, M.H., Misfolded proteins in Alzheimer's disease and type II diabetes (2012) Chem. Soc. Rev., 41, pp. 608-621
Phillips, L.K., Horowitz, M., Amylin (2006) Curr. Opin. Endocrinol. Diabetes, 13, pp. 191-198
Cao, P., Abedini, A., Raleigh, D.P., Aggregation of islet amyloid polypeptide: From physical chemistry to cell biology (2013) Curr. Opin. Struct. Biol., 23, pp. 82-89
Westermark, P., Andersson, A., Westermark, G.T., Islet amyloid polypeptide, islet amyloid and diabetes mellitus (2011) Physiol. Rev., 91, pp. 795-826
Westermark, P., Engström, U., Johnson, K.H., Westermark, G.T., Betsholtz, C., Islet amyloid polypeptide: Pinpointing amino acid residues linked to amyloid fibril formation (1990) Proc. Natl. Acad. Sci. U. S. A., 87, pp. 5036-5040
Konarkowska, B., Aitken, J.F., Kistler, J., Zhang, S., Cooper, G.J., The aggregation potential of human amylin determines its cytotoxicity towards islet beta-cells (2006) FEBS J., 273, pp. 3614-3624
Dupuis, N.F., Wu, C., Shea, J.-E., Bowers, M.T., The amyloid formation mechanism in human IAPP: Dimers have β-strand monomer-monomer interfaces (2011) J. Am. Chem. Soc., 133, pp. 7240-7243
Sedman, V.L., Allen, S., Chan, W.C., Davies, M.C., Roberts, C.J., Tendler, S.J., Williams, P.M., Atomic force microscopy study of human amylin (20-29) fibrils (2005) Protein Pept. Lett., 12, pp. 79-83
Pappalardo, G., Milardi, D., Magrì, A., Attanasio, F., Impellizzeri, G., La Rosa, C., Grasso, D., Rizzarelli, E., Environmental factors differently affect human and rat IAPP: Conformational preferences and membrane interactions of IAPP17-29 peptide derivatives (2007) Chemistry, 13, pp. 10204-10215
Alexandrescu, A.T., Amyloid accomplices and enforcers (2005) Protein Sci., 14, pp. 1-12
Jha, S., Patil, S.M., Gibson, J., Nelson, C.E., Alder, N.N., Alexandrescu, A.T., Mechanism of amylin fibrillization enhancement by heparin (2011) J. Biol. Chem., 286, pp. 22894-22904
Mirhashemi, S.M., Aarabi, M.H., Effect of two herbal polyphenol compounds on human amylin amyloid formation and destabilization (2012) J. Med. Plants Res., 6, pp. 3207-3212
Chien, V., Aitken, J.F., Zhang, S., Buchanan, C.M., Hickey, A., Brittain, T., Cooper, G.J.S., Loomes, K.M., The chaperone proteins HSP70, HSP40/DnaJ and GRP78/BiP suppress misfolding and formation of β-sheet-containing aggregates by human amylin: A potential role for defective chaperone biology in type 2 diabetes (2010) Biochem. J., 432, pp. 113-121
Cheng, B., Gong, H., Li, X., Sun, Y., Zhang, X., Chen, H., Liu, X., Huang, K., Silibinin inhibits the toxic aggregation of human islet amyloid polypeptide (2012) Biochem. Biophys. Res. Commun., 419, pp. 495-499
Tu, L.H., Raleigh, D.P., Role of aromatic interactions in amyloid formation by islet amyloid polypeptide (2013) Biochemistry, 52, pp. 333-342
Kamihira-Ishijima, M., Nakazawa, H., Kira, A., Naito, A., Nakayama, T., Inhibitory mechanism of pancreatic amyloid fibril formation: Formation of the complex between tea catechins and the fragment of residues 22-27 (2012) Biochemistry, 51, pp. 10167-10174
Cao, P., Raleigh, D.P., Analysis of the inhibition and remodeling of islet amyloid polypeptide amyloid fibers by flavanols (2012) Biochemistry, 51, pp. 2670-2683
Cheng, B., Liu, X., Gong, H., Huang, L., Chen, H., Zhang, X., Li, C., Huang, K., Coffee components inhibit amyloid formation of human islet amyloid polypeptide in vitro: Possible link between coffee consumption and diabetes mellitus (2011) J. Agric. Food Chem., 59, pp. 13147-13155
Pannuzzo, M., Raudino, A., Milardi, D., La Rosa, C., Karttunen, M., α-helical structures drive early stages of self-assembly of amyloidogenic amyloid polypeptide aggregate formation in membranes (2013) Sci. Rep., 3, p. 2781
Sciacca, M.F.M., Milardi, D., Messina, G.M.L., Marletta, G., Brender, J.R., Ramamoorthy, A., La Rosa, C., Cations as switches of amyloid-mediated membrane disruption mechanisms: Calcium and IAPP (2013) Biophys. J., 104, pp. 173-184
Brender, J.R., Hartman, K., Nanga, R.P., Popovych, N., De La Salud Bea, R., Vivekanandan, S., Marsh, E.N., Ramamoorthy, A., Role of zinc in human islet amyloid polypeptide aggregation (2010) J. Am. Chem. Soc., 132, pp. 8973-8983
Ward, B., Walker, K., Exley, C., Copper(ii) inhibits the formation of amylin amyloid in vitro (2008) J. Inorg. Biochem., 102, pp. 371-375
Yu, Y.P., Lei, P., Hu, J., Wu, W.H., Zhao, Y.F., Li, Y.M., Copper-induced cytotoxicity: Reactive oxygen species or islet amyloid polypeptide oligomer formation (2010) Chem. Commun., 46, pp. 6909-6911
Kállay, C., Dávid, A., Timári, S., Nagy, E.M., Sanna, D., Garribba, E., Micera, G., Sóvágó, I., Copper(ii) complexes of rat amylin fragments (2011) Dalton Trans., 40, pp. 9711-9721
Lemaire, K., Ravier, M.A., Schraenen, A., Creemers, J.W.M., Van De Plas, R., Granvik, M., Van Lommel, L., Schuit, F.C., Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 14872-14877
Masad, A., Hayes, L., Tabner, B.J., Turnbull, S., Cooper, L.J., Fullwood, N.J., German, M.J., Allsop, D., Copper-mediated formation of hydrogen peroxide from the amylin peptide: A novel mechanism for degeneration of islet cells in type-2 diabetes mellitus? (2007) FEBS Lett., 581, pp. 3489-3493
House, C.E.E., Patel, T., Wu, L., Fraser, P.E., Human pro-islet amyloid polypeptide (ProIAPP1-48) forms amyloid fibrils and amyloid spherulites in vitro (2010) J. Inorg. Biochem., 104, pp. 1125-1129
Bellia, F., Grasso, G., The role of copper(ii) and zinc(ii) in the degradation of human and murine IAPP by insulin-degrading enzyme (2014) J. Mass Spectrom., 49, pp. 274-279
Kim, M.J., Kim, H.T., Investigation of the copper binding site on the human islet amyloid polypeptide hormone (2012) Eur. J. Mass Spectrom., 18, pp. 51-58
Bennett, R.G., Duckworth, W.C., Hamel, F.G., Degradation of amylin by insulin-degrading enzyme (2000) J. Biol. Chem., 275, pp. 36621-36625
Guan, H., Chow, K.M., Shah, R., Rhodes, C.J., Hersh, L.B., Degradation of islet amyloid polypeptide by neprilysin (2012) Diabetologia, 55, pp. 2989-2998
Aston-Mourney, K., Zraika, S., Udayasankar, J., Subramanian, S.L., Green, P.S., Kahn, S.E., Hull, R.L., Matrix metalloproteinase-9 reduces islet amyloid formation by degrading islet amyloid polypeptide (2013) J. Biol. Chem., 288, pp. 3553-3559
Grasso, G., Salomone, F., Tundo, G.R., Pappalardo, G., Ciaccio, C., Spoto, G., Pietropaolo, A., Rizzarelli, E., Metal ions affect insulin-degrading enzyme activity (2012) J. Inorg. Biochem., 117, pp. 351-358
Grasso, G., Giuffrida, M.L., Rizzarelli, E., Metal ions and proteolytic enzymes in Alzheimer's disease (2012) Metallomics, 4, pp. 937-949
Grasso, G., Pietropaolo, A., Spoto, G., Pappalardo, G., Tundo, G.R., Ciaccio, C., Coletta, M., Rizzarelli, E., Copper(i) and copper(ii) inhibit Aβ peptides proteolysis by insulin-degrading enzyme differently: Implications for metallostasis alteration in Alzheimer's disease (2011) Chemistry, 17, pp. 2752-2762
Ralat, L.A., Kalas, V., Zheng, Z.Z., Goldman, R.D., Sosnick, T.R., Tang, W.-J., Ubiquitin is a novel substrate for human insulin-degrading enzyme (2011) J. Mol. Biol., 406, pp. 454-466
Bellia, F., Pietropaolo, A., Grasso, G., Formation of insulin fragments by insulin-degrading enzyme: The role of zinc(ii) and cystine bridges (2013) J. Mass Spectrom., 48, pp. 135-140
Grasso, G., Rizzarelli, E., Spoto, G., How the binding and degrading capabilities of insulin degrading enzyme are affected by ubiquitin (2008) Biochim. Biophys. Acta, Proteins Proteomics, 1784, pp. 1122-1126
Ciaccio, C., Tundo, G.F., Grasso, G., Spoto, G., Marasco, D., Ruvo, M., Gioia, M., Coletta, M., Somatostatin: A novel substrate and a modulator of insulin degrading enzyme activity (2009) J. Mol. Biol., 385, pp. 1556-1567
Shen, Y., Joachimiak, A., Rosner, M.R., Tang, W.-J., Structures of human insulin-degrading enzyme reveal a new substrate recognition mechanism (2006) Nature, 443, pp. 870-874
Guo, Q., Manolopoulou, M., Bian, Y., Schilling, A.B., Tang, W.-J., Molecular basis for the recognition and cleavages of IGF-II, TGF-α, and amylin by human insulin-degrading enzyme (2010) J. Mol. Biol., 395, pp. 430-443
Williams, N.R., Rajput-Williams, J., West, J.A., Nigdikar, S.V., Foote, J.W., Howard, A.N., Plasma, granulocyte and mononuclear cell copper and zinc in patients with diabetes mellitus (1995) Analyst, 120, pp. 887-890
Fu, W., Patel, A., Jhamandas, J.H., Amylin receptor: A common pathophysiological target in Alzheimer's disease and diabetes mellitus (2013) Front. Aging Neurosci., 42, pp. 1-4
Madine, J., Jack, E., Stockley, P.G., Radford, S.E., Serpell, L.C., Middleton, D.A., Structural insights into the polymorphism of amyloid-like fibrils formed by region 20-29 of amylin revealed by solid-state NMR and x-ray fiber diffraction (2008) J. Am. Chem. Soc., 130, pp. 14990-15001
Giuffrida, M. L., Caraci, F., Pignataro, B., Cataldo, S., De Bona, P., Bruno, V., Molinaro, G., Copani, A., Beta-amyloid monomers are neuroprotective (2009) J. Neurosci., 29, pp. 10582-1058
De Toma, A. S., Salamekh, S., Ramamoorthy, A., Lim, M. H., Misfolded proteins in Alzheimer's disease and type II diabetes (2012) Chem. Soc. Rev., 41, pp. 608-621
Phillips, L. K., Horowitz, M., Amylin (2006) Curr. Opin. Endocrinol. Diabetes, 13, pp. 191-198
Dupuis, N. F., Wu, C., Shea, J. -E., Bowers, M. T., The amyloid formation mechanism in human IAPP: Dimers have -strand monomer-monomer interfaces (2011) J. Am. Chem. Soc., 133, pp. 7240-7243
Sedman, V. L., Allen, S., Chan, W. C., Davies, M. C., Roberts, C. J., Tendler, S. J., Williams, P. M., Atomic force microscopy study of human amylin (20-29) fibrils (2005) Protein Pept. Lett., 12, pp. 79-83
Alexandrescu, A. T., Amyloid accomplices and enforcers (2005) Protein Sci., 14, pp. 1-12
Jha, S., Patil, S. M., Gibson, J., Nelson, C. E., Alder, N. N., Alexandrescu, A. T., Mechanism of amylin fibrillization enhancement by heparin (2011) J. Biol. Chem., 286, pp. 22894-22904
Mirhashemi, S. M., Aarabi, M. H., Effect of two herbal polyphenol compounds on human amylin amyloid formation and destabilization (2012) J. Med. Plants Res., 6, pp. 3207-3212
Tu, L. H., Raleigh, D. P., Role of aromatic interactions in amyloid formation by islet amyloid polypeptide (2013) Biochemistry, 52, pp. 333-342
Sciacca, M. F. M., Milardi, D., Messina, G. M. L., Marletta, G., Brender, J. R., Ramamoorthy, A., La Rosa, C., Cations as switches of amyloid-mediated membrane disruption mechanisms: Calcium and IAPP (2013) Biophys. J., 104, pp. 173-184
Brender, J. R., Hartman, K., Nanga, R. P., Popovych, N., De La Salud Bea, R., Vivekanandan, S., Marsh, E. N., Ramamoorthy, A., Role of zinc in human islet amyloid polypeptide aggregation (2010) J. Am. Chem. Soc., 132, pp. 8973-8983
Yu, Y. P., Lei, P., Hu, J., Wu, W. H., Zhao, Y. F., Li, Y. M., Copper-induced cytotoxicity: Reactive oxygen species or islet amyloid polypeptide oligomer formation (2010) Chem. Commun., 46, pp. 6909-6911
K llay, C., D vid, A., Tim ri, S., Nagy, E. M., Sanna, D., Garribba, E., Micera, G., S v g, I., Copper (ii) complexes of rat amylin fragments (2011) Dalton Trans., 40, pp. 9711-9721
House, C. E. E., Patel, T., Wu, L., Fraser, P. E., Human pro-islet amyloid polypeptide (ProIAPP1-48) forms amyloid fibrils and amyloid spherulites in vitro (2010) J. Inorg. Biochem., 104, pp. 1125-1129
Kim, M. J., Kim, H. T., Investigation of the copper binding site on the human islet amyloid polypeptide hormone (2012) Eur. J. Mass Spectrom., 18, pp. 51-58
Bennett, R. G., Duckworth, W. C., Hamel, F. G., Degradation of amylin by insulin-degrading enzyme (2000) J. Biol. Chem., 275, pp. 36621-36625
Guan, H., Chow, K. M., Shah, R., Rhodes, C. J., Hersh, L. B., Degradation of islet amyloid polypeptide by neprilysin (2012) Diabetologia, 55, pp. 2989-2998
Ralat, L. A., Kalas, V., Zheng, Z. Z., Goldman, R. D., Sosnick, T. R., Tang, W. -J., Ubiquitin is a novel substrate for human insulin-degrading enzyme (2011) J. Mol. Biol., 406, pp. 454-466
Williams, N. R., Rajput-Williams, J., West, J. A., Nigdikar, S. V., Foote, J. W., Howard, A. N., Plasma, granulocyte and mononuclear cell copper and zinc in patients with diabetes mellitus (1995) Analyst, 120, pp. 887-890
The role of copper(II) in the aggregation of human amylin
Amylin is a 37-residue peptide hormone produced by the islet beta-cells of pancreas and the formation of amylin aggregates is strongly associated with beta-cell degeneration in type 2 diabetes, as demonstrated by more than 95% of patients exhibiting amylin amyloid upon autopsy. It is widely recognized that metal ions such as copper(II) have been implicated in the aggregation process of amyloidogenic peptides such as Abeta and alpha-synuclein and there is evidence that amylin self-assembly is also largely affected by copper(II). For this reason, in this work, the role of copper(II) in the aggregation of amylin has been investigated by several different experimental approaches. Mass spectrometric investigations show that copper(II) induces significant changes in the amylin structure, which decrease the protein fibrillogenesis as observed by ThT measurements. Accordingly, solid-state NMR experiments together with computational analysis carried out on a model amylin fragment confirmed the non-fibrillogenic nature of the copper(II) induced aggregated structure. Finally, the presence of copper(II) is also shown to have a major influence on amylin proneness to be degraded by proteases and cytotoxicity studies on different cell cultures are reported.
The role of copper(II) in the aggregation of human amylin
No results.
The role of copper(II) in the aggregation of human amylin
Kállay C, Dávid A, Timári S, Nagy EM, Sanna D, Garribba E, Micera G, De Bona P, Pappalardo G, Rizzarelli E, Sóvágó I * Copper(II) complexes of rat amylin fragments(357 views) Dalton T (ISSN: 1477-9234, 1477-9226, 1477-9234electronic), 2011 Oct 14; 40(38): 9711-9721. Impact Factor:3.838 ViewExport to BibTeXExport to EndNote