Acylpeptide hydrolase inhibition as targeted strategy to induce proteasomal down-regulation(508 views) Palmieri G, Bergamo P, Luini A, Ruvo M, Gogliettino M, Langella E, Saviano M, Hegde RN, Sandomenico A, Rossi M
Plosone (ISSN: 1932-6203, 1932-6203electronic, 1932-6203linking), 2011 Oct 10; 6(10): e25888-e25888.
Keywords: Acylamino Acid Releasing Enzyme, Caspase, Immunoglobulin Enhancer Binding Protein, Linoleic Acid, Proteasome, Protein P21, Small Interfering Rna, Transmembrane Conductance Regulator, Ubiquitin, Acylaminoacyl Peptidase, Acylaminoacyl-Peptidase, Archaeal Protein, Conjugated Linoleic Acid, Oligopeptide, Peptide Hydrolase, Proteinase Inhibitor, Article, Cancer Growth, Cell Assay, Concentration Response, Conjugation, Controlled Study, Cytoplasm, Down Regulation, Enzyme Activation, Enzyme Activity, Enzyme Inhibition, Epithelium Cell, Genetic Transfection, Isomer, Protein Degradation, Signal Transduction, Ubiquitination, Animal, Apoptosis, Binding Site, Cell Strain Caco 2, Chemical Structure, Chemistry, Drug Design, Drug Effect, Drug Interaction, Enzyme Specificity, Human, Isomerism, Metabolism, Mutation, Protein Conformation, Sulfolobus Solfataricus, Caco-2 Cells, Cystic Fibrosis Transmembrane Conductance Regulator, Down-Regulation, Models, Molecular, Protease Inhibitors, Proteasome Endopeptidase Complex, Proteolysis, Substrate Specificity, Time Factors, Pharmacology, Deficiency,
Affiliations: *** IBB - CNR ***
Institute of Protein Biochemistry, National Research Council (CNR-IBP), Napoli, Italy
Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
Institute of Biostructure and Bioimaging, National Research Council (CNR-IBB), Napoli, Italy
Institute of Crystallography, National Council of Research of Italy (CNR-IC), Bari, Italy
Telethon Institute of Genetics and Medicine (TIGEM), Napoli, Italy
References: Ciechanover, A., Proteolysis: from the lysosome to ubiquitin and the proteasome (2005) Nat Rev Mol Cell Biol, 6, pp. 79-8
Schwartz, A.L., Ciechanover, A., Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology (2009) Annu Rev Pharmacol Toxicol, 49, pp. 73-96
Shah, I.M., Di Napoli, M., The ubiquitin-proteasome system and proteasome inhibitors in central nervous system diseases (2007) Cardiovasc Hematol Disord Drug Targets, 7, pp. 250-273
Rajkumar, S.V., Richardson, P.G., Hideshima, T., Anderson, K.C., Proteasome inhibition as a novel therapeutic target in human cancer (2005) J Clin Oncol, 23, pp. 630-639
Naujokat, C., Sezer, O., Zinke, H., Leclere, A., Hauptmann, S., Proteasome inhibitors induced caspase-dependent apoptosis and accumulation of p21WAF1/Cip1 in human immature leukemic cells (2000) Eur J Haematol, 65, pp. 221-236
Drexler, H.C.A., Activation of the cell death program by inhibition of proteasome function (1997) Proc Natl Acad Sci USA, 94, pp. 855-860
Palombella, V.J., Rando, O.J., Goldberg, A.L., Maniatis, T., The ubiquitinproteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB (1994) Cell, 78, pp. 773-785
Nencioni, A., Grunebach, F., Patrone, F., Ballestrero, A., Brossart, P., Proteasome inhibitors: antitumor effects and beyond (2007) Leukemia, 21, pp. 30-36
Vlahakis, S.R., Badley, A.D., Influence of proteasome inhibitors on apoptosis (2006) Curr Opin Clin Nutr Metab Care, 9, pp. 42-47
Orlowski, R.Z., Kuhn, D.J., Proteasome Inhibitors in Cancer Therapy: Lessons from the First Decade (2008) Clin Cancer Res, 14, pp. 1649-1657
Landis-Piwowar, K.R., Milacic, V., Chen, D., Yang, H., Zhao, Y., The proteasome as a potential target for novel anticancer drugs and chemosensitizers (2006) Drug Resist Updat, 9, pp. 263-273
Serini, S., Piccioni, E., Merendino, N., Calviello, G., Dietary polyunsaturated fatty acids as inducers of apoptosis: implications for cancer (2009) Apoptosis, 14, pp. 135-152
Park, Y., Conjugated linoleic acid (CLA): Good or bad trans fat? (2009) J Food Compos Anal, 22 S, pp. S4-S12
Hamel, F.G., Preliminary report: inhibition of cellular proteasome activity by free fatty acids (2009) Metabolism, 58, pp. 1047-1049
Shimizu, K., Kiuchi, Y., Ando, K., Hayakawa, M., Kikugawa, K., Coordination of oxidized protein hydrolase and the proteasome in the clearance of cytotoxic denatured proteins (2004) Biochem Biophys Res Commun, 324, pp. 140-146
Scaloni, A., Jones, W., Pospischil, M., Sassa, S., Schneewind, O., Deficiency of acylpeptide hydrolase in small-cell lung carcinoma cell lines (1992) J Lab Clin Med, 120, pp. 546-552
Palmieri, G., Langella, E., Gogliettino, M., Saviano, M., Pocsfalvi, G., A novel class of protease targets of phosphatidylethanolamine-binding proteins (PEBP): a study of the acylpeptide hydrolase and the PEBP inhibitor from the archaeon Sulfolobus solfataricus (2010) Mol Biosyst, 6, pp. 2498-2507
Palmieri, G., Catara, G., Saviano, M., Langella, E., Gogliettino, M., First Archaeal PEPB-Serine Protease Inhibitor from Sulfolobus solfataricus with Noncanonical Amino Acid Sequence in the Reactive-Site Loop (2009) J Proteome Res, 8, pp. 327-334
Ponticelli, S., Marasco, D., Tarallo, V., Albuquerque, R.J., Mitola, S., Modulation of angiogenesis by a tetrameric tripeptide that antagonizes vascular endothelial growth factor receptor 1 (2008) J Biol Chem, 283, pp. 34250-34259
Cheng, S.H., Gregory, R.J., Marshall, J., Paul, S., Souza, D.W., Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis (1990) Cell, 63, pp. 827-834
Ward, C.L., Omura, S., Kopito, R.R., Degradation of CFTR by the ubiquitin-proteasome pathway (1995) Cell, 83, pp. 121-127
Jensen, T.J., Loo, M.A., Pind, S., Williams, D.B., Goldberg, A.L., Multiple proteolytic systems, including the proteasome, contribute to CFTR processing (1995) Cell, 83, pp. 129-135
Busse, A., Kraus, M., Na, I.K., Rietz, A., Scheibenbogen, C., Sensitivity of tumor cells to proteasome inhibitors is associated with expression levels and composition of proteasome subunits (2008) Cancer, 112, pp. 659-670
Chou, T.C., Talalay, P., Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors (1984) Adv Enzyme Regul, 22, pp. 27-55
Suzuki, Y., Nakabayashi, Y., Takahashi, R., Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death (2001) Proc Natl Acad Sci USA, 98, pp. 8662-8667
Hideshima, T., Chauhan, D., Richardson, P., Mitsiades, C., Mitsiades, N., NF-kappa B as a therapeutic target in multiple myeloma (2002) J Biol Chem, 277, pp. 16639-16647
Wertz, I.E., Dixit, V.M., Signaling to NF-kappaB: regulation by ubiquitination (2010) Cold Spring Harb Perspect Biol 2010 Mar, 2 (3), pp. a003350. , (Ed. Louis M. Staudt and Michael Karin)
Bloom, J., Amador, V., Bartolini, F., DeMartino, G., Pagano, M., Proteasome-mediated degradation of p21 via N-terminal ubiquitinylation (2003) Cell, 115, pp. 71-82
Moore, H.E., Davenport, E.L., Smith, E.M., Muralikrishnan, S., Dunlop, A.S., Aminopeptidase inhibition as a targeted treatment strategy in myeloma (2009) Mol Cancer Ther, 8, pp. 762-770
Wahle, K.W.J., Heys, S.D., Rotondo, D., Conjugated linoleic acids: are they beneficial or detrimental to health? (2004) Progr Lipid Res, 43, pp. 553-587
Reynolds, C.M., Roche, H.M., Conjugated linoleic acid and inflammatory cell signalling (2010) Prostaglandins Leukot Essent Fatty Acids, 82, pp. 199-204
Bartlam, M., Wang, G., Yang, H., Gao, R., Zhao, X., Crystal structure of an acylpeptide hydrolase/esterase from Aeropyrum pernix K1 (2004) Structure, 12, pp. 1481-1488
Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Automated docking using Lamarckian genetic algorithm and an empirical binding free energy function (1998) J Comput Chem, 19, pp. 1639-1662
Sacchinettini, J.C., Scapin, G., Gopaul, D., Gordon, J.I., Refinement of the structure of Escherichia coli-derived rat intestinal fatty acid binding protein with bound oleate to 1.75-A resolution. Correlation with the structures of the apoprotein and the protein with bound palmitate (1992) J Biol Chem, 267, pp. 23534-23545
Hamilton, J.A., Fatty acid interactions with proteins: what X-ray crystal and NMR solution structures tell us (2004) Progr Lipid Res, 43, pp. 177-199
Nencioni, A., Grünebach, F., Patrone, F., Ballestrero, A., Brossart, P., Proteasome inhibitors: antitumor effects and beyond (2007) Leukemia, 21, pp. 30-36
Saric, T., Graef, C.I., Goldberg, A.L., Pathway for degradation of peptides generated by proteasomes: a key role for thimet oligopeptidase and other metallopeptidases (2004) J Biol Chem, 279, pp. 46723-46732
Ichinose, Y., Genka, K., Koike, T., Kato, H., Watanabe, Y., Randomized double-blind placebo controlled trial of bestatin in patients with resected stage I squamous-cell carcinoma (2003) J Natl Cancer Inst, 95, pp. 605-610
Perrier, J., Durand, A., Giardina, T., Puigserver, A., Catabolism of intracellular N-terminal acetylated proteins: involvement of acylpeptide hydrolase and acylase (2005) Biochimie, 87, pp. 673-685
Arnesen, T., van Damme, P., Polevoda, B., Helsens, K., Evjenth, R., Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans (2009) Proc Natl Acad Sci U S A, 106, pp. 8157-8162
Goetze, S., Qeli, E., Mosimann, C., Staes, A., Gerrits, B., Identification and functional characterization of N-terminally acetylated proteins in Drosophila melanogaster (2009) PLoS Biol, 7, pp. e1000236
Boissel, J.P., Kasper, T.J., Bunn, H.F., Cotranslational amino-terminal processing of cytosolic proteins. Cell-free expression of site-directed mutants of human hemoglobin (1988) J Biol Chem, 263, pp. 8443-8449
Kouzarides, T., Acetylation: a regulatory modification to rival phosphorylation? (2000) EMBO J, 19, pp. 1176-1179
Shimizu, K., Fujino, T., Ando, K., Hayakawa, M., Yasuda, H., Overexpression of oxidized protein hydrolase protect COS-7 cells from oxidative stress-induced inhibition of cell growth and survival (2003) Biochem Biophys Res Commun, 304, pp. 766-771
Ben Saadon, R., Fajerman, I., Ziv, T., Hellman, U., Schwartz, A.L., The tumor suppressor protein p16(INK4a) and the human papillomavirus oncoprotein-58 E7 are naturally occurring lysine-less proteins that are degraded by the ubiquitin system. Direct evidence for ubiquitination at the N-terminal residue (2004) J Biol Chem, 279, pp. 41414-41421
Hwang, C.S., Shemorry, A., Varshavsky, A., N-terminal acetylation of cellular proteins creates specific degradation signals (2010) Science, 327, pp. 973-977
Fields, G.B., Noble, R.L., Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids (1990) Int J Pept Protein Res, 35, pp. 161-214
Decker, T., Lohmann-Matthes, M.L., A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity (1988) J Immunol Methods, 115, pp. 61-69
Koradi, R., Billeter, M., Wüthrich, K., MOLMOL: a program for display and analysis of macromolecular structures (1996) J Mol Graph, 14, pp. 51-55+29-32
Schwartz, A. L., Ciechanover, A., Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology (2009) Annu Rev Pharmacol Toxicol, 49, pp. 73-96
Shah, I. M., Di Napoli, M., The ubiquitin-proteasome system and proteasome inhibitors in central nervous system diseases (2007) Cardiovasc Hematol Disord Drug Targets, 7, pp. 250-273
Rajkumar, S. V., Richardson, P. G., Hideshima, T., Anderson, K. C., Proteasome inhibition as a novel therapeutic target in human cancer (2005) J Clin Oncol, 23, pp. 630-639
Drexler, H. C. A., Activation of the cell death program by inhibition of proteasome function (1997) Proc Natl Acad Sci USA, 94, pp. 855-860
Palombella, V. J., Rando, O. J., Goldberg, A. L., Maniatis, T., The ubiquitinproteasome pathway is required for processing the NF- B1 precursor protein and the activation of NF- B (1994) Cell, 78, pp. 773-785
Vlahakis, S. R., Badley, A. D., Influence of proteasome inhibitors on apoptosis (2006) Curr Opin Clin Nutr Metab Care, 9, pp. 42-47
Orlowski, R. Z., Kuhn, D. J., Proteasome Inhibitors in Cancer Therapy: Lessons from the First Decade (2008) Clin Cancer Res, 14, pp. 1649-1657
Landis-Piwowar, K. R., Milacic, V., Chen, D., Yang, H., Zhao, Y., The proteasome as a potential target for novel anticancer drugs and chemosensitizers (2006) Drug Resist Updat, 9, pp. 263-273
Hamel, F. G., Preliminary report: inhibition of cellular proteasome activity by free fatty acids (2009) Metabolism, 58, pp. 1047-1049
Cheng, S. H., Gregory, R. J., Marshall, J., Paul, S., Souza, D. W., Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis (1990) Cell, 63, pp. 827-834
Ward, C. L., Omura, S., Kopito, R. R., Degradation of CFTR by the ubiquitin-proteasome pathway (1995) Cell, 83, pp. 121-127
Jensen, T. J., Loo, M. A., Pind, S., Williams, D. B., Goldberg, A. L., Multiple proteolytic systems, including the proteasome, contribute to CFTR processing (1995) Cell, 83, pp. 129-135
Chou, T. C., Talalay, P., Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors (1984) Adv Enzyme Regul, 22, pp. 27-55
Wertz, I. E., Dixit, V. M., Signaling to NF-kappaB: regulation by ubiquitination (2010) Cold Spring Harb Perspect Biol 2010 Mar, 2 (3), pp. a003350. , (Ed. Louis M. Staudt and Michael Karin)
Moore, H. E., Davenport, E. L., Smith, E. M., Muralikrishnan, S., Dunlop, A. S., Aminopeptidase inhibition as a targeted treatment strategy in myeloma (2009) Mol Cancer Ther, 8, pp. 762-770
Wahle, K. W. J., Heys, S. D., Rotondo, D., Conjugated linoleic acids: are they beneficial or detrimental to health? (2004) Progr Lipid Res, 43, pp. 553-587
Reynolds, C. M., Roche, H. M., Conjugated linoleic acid and inflammatory cell signalling (2010) Prostaglandins Leukot Essent Fatty Acids, 82, pp. 199-204
Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Automated docking using Lamarckian genetic algorithm and an empirical binding free energy function (1998) J Comput Chem, 19, pp. 1639-1662
Sacchinettini, J. C., Scapin, G., Gopaul, D., Gordon, J. I., Refinement of the structure of Escherichia coli-derived rat intestinal fatty acid binding protein with bound oleate to 1. 75-A resolution. Correlation with the structures of the apoprotein and the protein with bound palmitate (1992) J Biol Chem, 267, pp. 23534-23545
Hamilton, J. A., Fatty acid interactions with proteins: what X-ray crystal and NMR solution structures tell us (2004) Progr Lipid Res, 43, pp. 177-199
Nencioni, A., Gr nebach, F., Patrone, F., Ballestrero, A., Brossart, P., Proteasome inhibitors: antitumor effects and beyond (2007) Leukemia, 21, pp. 30-36
Boissel, J. P., Kasper, T. J., Bunn, H. F., Cotranslational amino-terminal processing of cytosolic proteins. Cell-free expression of site-directed mutants of human hemoglobin (1988) J Biol Chem, 263, pp. 8443-8449
Hwang, C. S., Shemorry, A., Varshavsky, A., N-terminal acetylation of cellular proteins creates specific degradation signals (2010) Science, 327, pp. 973-977
Fields, G. B., Noble, R. L., Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids (1990) Int J Pept Protein Res, 35, pp. 161-214
Acylpeptide hydrolase inhibition as targeted strategy to induce proteasomal down-regulation
Vitiello M, Finamore E, Falanga A, Raieta K, Cantisani M, Galdiero F, Pedone C, Galdiero M, Galdiero S * Fusion in Coq(481 views) Lecture Notes In Computer Science (ISSN: 0302-9743, 0302-974335404636319783540463634, 0302-974335402975459783540297543), 2001; 2178LNCS: 583-596. Impact Factor:0.415 ViewExport to BibTeXExport to EndNote