The hemoglobins of sub-Antarctic fishes of the suborder Notothenioidei(350 views) Coppola D, Giordano D, Vergara A, Mazzarella L, Di Prisco G, Verde C, Russo R
Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy
Department of Chemistry, University of Naples 'Federico II', Complesso Universitario Monte, Via Cinthia, I-80126 Naples, Italy
References: Andrew, T.G., Hecht, T., Heemstra, P.C., Lutjeharms, J.R.E., Fishes of the Tristan da Cunha Group and Gough Island, South Atlantic Ocean (1995) Ichthyol. Bull. J.L.B. Smith Inst. Ichthyol., 63, pp. 1-4
Baldwin, J., Chothia, C., Hemoglobin: the structural changes related to ligand binding and its allosteric mechanism (1979) J. Mol. Biol., 129, pp. 175-220
Balushkin, A.V., Morphology, classification, and evolution of notothenioid fishes of the Southern Ocean (Notothenioidei Perciformes) (2000) J. Ichthyol., 40, pp. S74-S109
Bargelloni, L., Marcato, S., Zane, L., Patarnello, T., Mitochondrial phylogeny of notothenioids: a molecular approach to Antarctic fish evolution and biogeography (2000) Syst. Biol., 49, pp. 114-129
Brickle, P., Arkhipkin, A.I., Shcherbich, Z.N., Age and growth in a temperate euryhaline notothenioid, Eleginops maclovinus from the Falkland Islands (2005) J. Mar. Biol. Assoc. U.K., 85, pp. 1217-1221
Brittain, T., The Root effect (1987) Comp. Biochem. Physiol., B., 86, pp. 473-481
Camardella, L., Caruso, C., D'Avino, R., di Prisco, G., Rutigliano, B., Tamburrini, M., Fermi, G., Perutz, M.F., Hemoglobin of the Antarctic fish Pagothenia bernacchii. Amino acid sequence, oxygen equilibria and crystal structure of its carbonmonoxy derivative (1992) J. Mol. Biol., 224, pp. 449-460
Cheng, C.-H.C., Detrich, H.W., Molecular ecophysiology of Antarctic notothenioid fishes (2007) Phil. Trans. R. Soc. B., 362, pp. 2215-2232
Cheng, C.-H.C., DeVries, A.L., The role of antifreeze glycopeptides and peptides in the freezing avoidance of cold water fishes (1991) Life Under Extreme Conditions, pp. 1-14. , Springer-Verlag, Berlin-Heidelberg, G. di Prisco (Ed.)
Cheng, C.-H.C., Chen, L., Near, T.J., Jin, Y., Functional antifreeze glycoprotein genes in temperate water New Zealand notothenioid fish infer an Antarctic evolutionary origin (2003) Mol. Biol. Evol., 20, pp. 1897-1908
Clarke, A., Life in cold water: the physiological ecology of polar marine ecthoterms (1983) Oceanogr. Mar. Biol. Annu. Rev., 21, pp. 341-453
Coppes, Z.L., Somero, G.N., Biochemical adaptations of notothenioid fishes: comparisons between cold temperate South American and New Zealand species and Antarctic species (2007) Comp. Biochem. Physiol. A Mol. Integr. Physiol., 147, pp. 799-807
D'Avino, R., Caruso, C., Tamburrini, M., Romano, M., Rutigliano, B., Polverino De Laureto, P., Camardella, L., di Prisco, G., Molecular characterization of the functionally distinct hemoglobins of the Antarctic fish Trematomus newnesi (1994) J. Biol. Chem., 269, pp. 9675-9681
Davis, M.B., Shaw, R.G., Etterson, J.R., Evolutionary responses to changing climate (2005) Ecology, 86, pp. 1704-1714
di Prisco, G., Eastman, J.T., Giordano, D., Parisi, E., Verde, C., Biogeography and adaptation of Notothenioid fish: hemoglobin function and globin-gene evolution (2007) Gene, 398, pp. 143-155
di Prisco, G., Tamburrini, M., The hemoglobins of marine and freshwater fish: the search for correlation with physiological adaptation (1992) Comp. Biochem. Physiol. B., 102, pp. 661-671
Eastman, J.T., Ocular morphology in Antarctic notothenioid fishes (1988) J. Morphol., 196, pp. 283-306
Eastman, J.T., (1993) Antarctic Fish Biology: Evolution in a Unique Environment, , Academic Press, San Diego, CA
Eastman, J.T., The nature of the diversity of Antarctic fishes (2005) Polar Biol., 28, pp. 94-107
Eastman, J.T., Aspects of the morphology of phyletically basal bovichtid fishes of the Antarctic suborder Notothenioidei (Perciformes) (2006) Polar Biol., 29, pp. 754-763
Eastman, J.T., Eakin, R.R., An updated species list for notothenioid fish (Perciformes: Notothenioidei), with comments on Antarctic species (2000) Arch. Fish. Mar. Res., 48, pp. 11-20
Eastman, J.T., Lannoo, M.J., Brain and sense organ anatomy and histology of the Falkland Islands mullet, Eleginops maclovinus (Eleginopidae), the sister group of the Antarctic notothenioid fishes (Perciformes: Notothenioidei) (2008) J. Morphol., 269, pp. 84-103
Eastman, J.T., McCune, A.R., Fishes on the Antarctic continental shelf: evolution of a marine species flock? (2000) J. Fish Biol., 57, pp. 84-102
Fago, A., Forest, E., Weber, R.E., Hemoglobin and subunit multiplicity in the rainbow trout (Oncorhynchus mykiss) hemoglobin system (2002) Fish. Physiol. Biochem., 24, pp. 335-342
(2003) The Falkland Mullet Eleginops Maclovinus: Biology and Fishery in Falkands Islands' Waters, p. 64. , Falkland Islands Government, Scientific Report, Fisheries Department, Falkland Islands Government, Stanley, Falkands Islands
Feuerlein, R.J., Weber, R.E., Rapid and simultaneous measurement of anodic and cathodic haemoglobins and ATP and GTP concentrations in minute quantities of fish blood (1994) J. Exp. Biol., 189, pp. 273-277
Giordano, D., Grassi, L., Parisi, E., Bargelloni, L., di Prisco, G., Verde, C., Embryonic β-globin in the non-Antarctic notothenioid fish Cottoperca gobio (Bovichtidae) (2006) Polar Biol., 30, pp. 75-82
Giordano, D., Boechi, L., Vergara, A., Martí, M.A., Samuni, U., Dantsker, D., Grassi, L., Verde, C., The hemoglobins of the sub-Antarctic fish Cottoperca gobio, a phyletically basal species-oxygen-binding equilibria, kinetics and molecular dynamics (2009) FEBS J., 276, pp. 2266-2277
Hofmann, G.E., Buckley, B.A., Airaksinen, S., Keen, J.E., Somero, G.N., Heat-shock protein expression is absent in the Antarctic fish Trematomus bernacchii (family Nototheniidae) (2000) J. Exp. Biol., 203, pp. 2331-2339
Hofmann, G.E., Lund, S.G., Place, S.P., Whitmer, A.C., Some like it hot, some like it cold: the heat shock response is found in New Zealand but not Antarctic notothenioid fishes (2005) J. Exp. Mar. Biol. Ecol., 316, pp. 79-89
Holt, R.D., The microevolutionary consequences of climate change (1990) Trends Ecol. Evol., 5, pp. 311-315
Ito, N., Komiyama, N.H., Fermi, G., Structure of deoxyhemoglobin of the Antarctic fish Pagothenia bernacchii with an analysis of the structural basis of the Root effect by comparison of the liganded and unliganded hemoglobin structures (1995) J. Mol. Biol., 250, pp. 648-658
Kumar, S., Tamura, K., Nei, M., MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment (2004) Brief. Bioinform., 5, pp. 150-163
Maruyama, K., Yasumasu, S., Iuchi, I., Evolution of globin genes of the medaka Oryzias latipes (Euteleostei
Oryziinae) (2004) Mech. Dev., 121, pp. 753-769
Mazzarella, L., D'Avino, R., di Prisco, G., Savino, C., Vitagliano, L., Moody, P.C., Zagari, A., Crystal structure of Trematomus newnesi haemoglobin re-opens the root effect question (1999) J. Mol. Biol., 287, pp. 897-906
Mazzarella, L., Bonomi, G., Lubrano, M.C., Merlino, A., Vergara, A., Vitagliano, L., Verde, C., di Prisco, G., Minimal structural requirement of Root effect: crystal structure of the cathodic hemoglobin isolated from Trematomus newnesi (2006) Proteins: Struct. Funct. Bioinf., 62, pp. 316-321
Mazzarella, L., Vergara, A., Vitagliano, L., Merlino, A., Bonomi, G., Scala, S., Verde, C., di Prisco, G., High resolution crystal structure of deoxy hemoglobin from Trematomus bernacchii at different pH values: the role of histidine residues in modulating the strength of the Root effect (2006) Proteins Struct. Funct. Bioinf., 65, pp. 490-498
Merlino, A., Vitagliano, L., Howes, B., Verde, C., di Prisco, G., Smulevich, G., Sica, F., Vergara, A., Combined crystallographic and spectroscopic analysis of Trematomus bernacchii hemoglobin highlights analogies and differences in the peculiar oxidation pathway of Antarctic fish hemoglobins (2009) Biopolymers, 91, pp. 1117-1125
Near, T.J., Pesavento, J.J., Cheng, C.-H.C., Phylogenetic investigations of Antarctic notothenioid fishes (Perciformes: Notothenioidei) using complete gene sequences of the mitochondrial encoded 16S rRNA (2004) Mol. Phylogenet. Evol., 32, pp. 881-891
Riccio, A., Vitagliano, L., di Prisco, G., Zagari, A., Mazzarella, L., The crystal structure of a tetrameric hemoglobin in a partial hemichrome state (2002) Proc. Natl. Acad. Sci. U.S.A., 99, pp. 9801-9806
Ruud, J.T., Vertebrates without erythrocytes and blood pigment (1954) Nature, 173, pp. 848-850
Sambrook, J., Fritsch, E.F., Maniatis, T., (1989) Molecular Cloning: a Laboratory Manual, , Cold Spring Harbor Laboratory Press, Cold Spring Harbor
Scher, H.D., Martin, E.E., Timing and climatic consequences of the opening of drake passage (2006) Science, 312, pp. 428-430
Stam, W.T., Beintema, J.J., D'Avino, R., Tamburrini, M., di Prisco, G., Molecular evolution of hemoglobins of Antarctic fishes (Notothenioidei) (1997) J. Mol. Evol., 45, pp. 437-445
Tamburrini, M., Condò, S.G., di Prisco, G., Giardina, B., Adaptation to extreme environments: structure-function relationships in Emperor penguin haemoglobin (1994) J. Mol. Biol., 237, pp. 615-621
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools (1997) Nucleic Acid Res., 25, pp. 4876-4882
Verde, C., Carratore, V., Riccio, A., Tamburrini, M., Parisi, E., di Prisco, G., The functionally distinct hemoglobins of the Arctic spotted wolfish Anarhichas minor (2002) J. Biol. Chem., 277, pp. 36312-36320
Verde, C., Howes, B.D., De Rosa, M.C., Raiola, L., Smulevich, G., Williams, R., Giardina, B., di Prisco, G., Structure and function of the Gondwanian hemoglobin of Pseudaphritis urvillii, a primitive notothenioid fish of temperate latitudes (2004) Protein Sci., 13, pp. 2766-2781
Verde, C., Balestrieri, M., de Pascale, D., Pagnozzi, D., Lecointre, G., di Prisco, G., The oxygen-transport system in three species of the boreal fish family Gadidae. Molecular phylogeny of hemoglobin (2006) J. Biol. Chem., 281, pp. 22073-22084
Verde, C., Parisi, E., di Prisco, G., The evolution of hemoglobin of thermal adaptation in polar fish (2006) Gene, 385, pp. 137-145
Verde, C., Vergara, A., Mazzarella, L., di Prisco, G., Hemoglobins of fishes living at polar latitudes: current knowledge on evolutionary and structural adaptation in a changing environment (2008) Curr. Prot. Pept. Sci., 9, pp. 578-590
Vergara, A., Franzese, M., Merlino, A., Vitagliano, L., di Prisco, G., Verde, C., Lee, H.C., Mazzarella, L., Structural characterization of ferric hemoglobins from three Antarctic fish species of the suborder Notothenioidei (2007) Biophys. J., 93, pp. 2822-2829
Vitagliano, L., Vergara, A., Bonomi, G., Merlino, A., Smulevich, G., Howes, B., di Prisco, G., Mazzarella, L., Spectroscopic and crystallographic analysis of a tetrameric hemoglobin oxidation pathway reveals features of an intermediate R/T state (2008) J. Am. Chem. Soc., 130, pp. 10527-10535
Weber, R.E., Functional significance and structural basis of multiple hemoglobins with special reference to ectothermic vertebrates (1990) Animal Nutrition and Transport Processes, 2, pp. 58-75. , Karger, Basel, J.-P. Truchot, B. Lahlou (Eds.) Transport, Respiration and Excretion: Comparative and Environmental Aspects
Weber, R.E., Jensen, F.B., Cox, R.P., Analysis of teleost hemoglobin by Adair and Monod-Wyman-Changeux models. Effects of nucleoside triphosphates and pH on oxygenation of tench hemoglobin (1987) J. Comput. Physiol., 157, pp. 145-152
Weber, R.E., Fago, A., Val, A.L., Bang, A., Van Hauwert, M.L., Dewilde, S., Zal, F., Moens, L., Isohemoglobin differentiation in the bimodal-breathing amazon catfish Hoplosternum littorale (2000) J. Biol. Chem., 275, pp. 17297-17305
Wittenberg, J.B., Schwend, M.J., Wittenberg, B.A., The secretion of oxygen into the swim-bladder of fish III. The role of carbon dioxide (1964) J. Gen. Physiol., 48, pp. 337-355
Wittenberg, J.B., Haedrich, R.L., The choroid rete mirabile of the fish eye. II. Distribution and relation to the pseudobranch and to the swim-bladder rete mirabile (1974) Biol. Bull., 146, pp. 137-156
Wittenberg, J.B., Wittenberg, B.A., The secretion of oxygen into the swim-bladder of fish. II. The transport of molecular oxygen (1961) J. Gen. Physiol., 44, pp. 527-542
Yokoyama, T., Chong, K.T., Miyazaki, G., Morimoto, H., Shih, D.T.B., Unzai, S., Tame, J.R.H., Park, S.-Y., Novel mechanisms of pH sensitivity in tuna hemoglobin: a structural explanation of the root effect (2004) J. Biol. Chem., 279, pp. 28632-28640
Andrew, T. G., Hecht, T., Heemstra, P. C., Lutjeharms, J. R. E., Fishes of the Tristan da Cunha Group and Gough Island, South Atlantic Ocean (1995) Ichthyol. Bull. J. L. B. Smith Inst. Ichthyol., 63, pp. 1-4
Balushkin, A. V., Morphology, classification, and evolution of notothenioid fishes of the Southern Ocean (Notothenioidei Perciformes) (2000) J. Ichthyol., 40, pp. S74-S109
Cheng, C. -H. C., Detrich, H. W., Molecular ecophysiology of Antarctic notothenioid fishes (2007) Phil. Trans. R. Soc. B., 362, pp. 2215-2232
Cheng, C. -H. C., Chen, L., Near, T. J., Jin, Y., Functional antifreeze glycoprotein genes in temperate water New Zealand notothenioid fish infer an Antarctic evolutionary origin (2003) Mol. Biol. Evol., 20, pp. 1897-1908
Coppes, Z. L., Somero, G. N., Biochemical adaptations of notothenioid fishes: comparisons between cold temperate South American and New Zealand species and Antarctic species (2007) Comp. Biochem. Physiol. A Mol. Integr. Physiol., 147, pp. 799-807
Davis, M. B., Shaw, R. G., Etterson, J. R., Evolutionary responses to changing climate (2005) Ecology, 86, pp. 1704-1714
Eastman, J. T., Ocular morphology in Antarctic notothenioid fishes (1988) J. Morphol., 196, pp. 283-306
Eastman, J. T., (1993) Antarctic Fish Biology: Evolution in a Unique Environment, , Academic Press, San Diego, CA
Eastman, J. T., The nature of the diversity of Antarctic fishes (2005) Polar Biol., 28, pp. 94-107
Eastman, J. T., Aspects of the morphology of phyletically basal bovichtid fishes of the Antarctic suborder Notothenioidei (Perciformes) (2006) Polar Biol., 29, pp. 754-763
Eastman, J. T., Eakin, R. R., An updated species list for notothenioid fish (Perciformes: Notothenioidei), with comments on Antarctic species (2000) Arch. Fish. Mar. Res., 48, pp. 11-20
Eastman, J. T., Lannoo, M. J., Brain and sense organ anatomy and histology of the Falkland Islands mullet, Eleginops maclovinus (Eleginopidae), the sister group of the Antarctic notothenioid fishes (Perciformes: Notothenioidei) (2008) J. Morphol., 269, pp. 84-103
Eastman, J. T., McCune, A. R., Fishes on the Antarctic continental shelf: evolution of a marine species flock? (2000) J. Fish Biol., 57, pp. 84-102
(2003) The Falkland Mullet Eleginops Maclovinus: Biology and Fishery in Falkands Islands' Waters, p. 64. , Falkland Islands Government, Scientific Report, Fisheries Department, Falkland Islands Government, Stanley, Falkands Islands
Feuerlein, R. J., Weber, R. E., Rapid and simultaneous measurement of anodic and cathodic haemoglobins and ATP and GTP concentrations in minute quantities of fish blood (1994) J. Exp. Biol., 189, pp. 273-277
Hofmann, G. E., Buckley, B. A., Airaksinen, S., Keen, J. E., Somero, G. N., Heat-shock protein expression is absent in the Antarctic fish Trematomus bernacchii (family Nototheniidae) (2000) J. Exp. Biol., 203, pp. 2331-2339
Hofmann, G. E., Lund, S. G., Place, S. P., Whitmer, A. C., Some like it hot, some like it cold: the heat shock response is found in New Zealand but not Antarctic notothenioid fishes (2005) J. Exp. Mar. Biol. Ecol., 316, pp. 79-89
Holt, R. D., The microevolutionary consequences of climate change (1990) Trends Ecol. Evol., 5, pp. 311-315
Near, T. J., Pesavento, J. J., Cheng, C. -H. C., Phylogenetic investigations of Antarctic notothenioid fishes (Perciformes: Notothenioidei) using complete gene sequences of the mitochondrial encoded 16S rRNA (2004) Mol. Phylogenet. Evol., 32, pp. 881-891
Ruud, J. T., Vertebrates without erythrocytes and blood pigment (1954) Nature, 173, pp. 848-850
Scher, H. D., Martin, E. E., Timing and climatic consequences of the opening of drake passage (2006) Science, 312, pp. 428-430
Stam, W. T., Beintema, J. J., D'Avino, R., Tamburrini, M., di Prisco, G., Molecular evolution of hemoglobins of Antarctic fishes (Notothenioidei) (1997) J. Mol. Evol., 45, pp. 437-445
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., Higgins, D. G., The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools (1997) Nucleic Acid Res., 25, pp. 4876-4882
Weber, R. E., Functional significance and structural basis of multiple hemoglobins with special reference to ectothermic vertebrates (1990) Animal Nutrition and Transport Processes, 2, pp. 58-75. , Karger, Basel, J. -P. Truchot, B. Lahlou (Eds.) Transport, Respiration and Excretion: Comparative and Environmental Aspects
Weber, R. E., Jensen, F. B., Cox, R. P., Analysis of teleost hemoglobin by Adair and Monod-Wyman-Changeux models. Effects of nucleoside triphosphates and pH on oxygenation of tench hemoglobin (1987) J. Comput. Physiol., 157, pp. 145-152
Weber, R. E., Fago, A., Val, A. L., Bang, A., Van Hauwert, M. L., Dewilde, S., Zal, F., Moens, L., Isohemoglobin differentiation in the bimodal-breathing amazon catfish Hoplosternum littorale (2000) J. Biol. Chem., 275, pp. 17297-17305
Wittenberg, J. B., Schwend, M. J., Wittenberg, B. A., The secretion of oxygen into the swim-bladder of fish III. The role of carbon dioxide (1964) J. Gen. Physiol., 48, pp. 337-355
The hemoglobins of sub-Antarctic fishes of the suborder Notothenioidei
Fishes of the perciform suborder Notothenioidei provide an excellent opportunity for studying the evolution and functional importance of evolutionary adaptations to temperature. To understand the unique biochemical features of high-Antarctic notothenioids, it is important to improve our knowledge of these highly cold-adapted stenotherms with new information on their sub-Antarctic relatives. This paper focuses on the oxygen-transport system of two non-Antarctic species, Eleginops maclovinus and Bovichtus diacanthus. Unlike most Antarctic notothenioids, the blood of E. maclovinus and B. diacanthus displays high hemoglobin (Hb) multiplicity. E. maclovinus, the sister group of Antarctic notothenioids, has one cathodal (Hb C) and two anodal components (Hb 1, Hb 2). B. diacanthus, one of the most northern notothenioids, has three major Hbs. The multiple Hbs may have been maintained as a response to temperature differences and fluctuations of temperate waters, much larger than in the Antarctic. Although non-Antarctic notothenioids have never developed cold adaptation, the amino-acid sequence reveals high identity with the globins of Antarctic notothenioids. Hbs of sub-Antarctic notothenioids are characterised by high oxygen affinity and Root effect. Phylogenetic analyses are consistent with the hypothesis that Bovichtidae and Eleginopidae diverged after they became established in more temperate waters north of the Antarctic Polar Front.
The hemoglobins of sub-Antarctic fishes of the suborder Notothenioidei
Kállay C, Dávid A, Timári S, Nagy EM, Sanna D, Garribba E, Micera G, De Bona P, Pappalardo G, Rizzarelli E, Sóvágó I * Copper(II) complexes of rat amylin fragments(357 views) Dalton T (ISSN: 1477-9234, 1477-9226, 1477-9234electronic), 2011 Oct 14; 40(38): 9711-9721. Impact Factor:3.838 ViewExport to BibTeXExport to EndNote
Aloj L, Aurilio M, Rinaldi V, D'Ambrosio L, Tesauro D, Peitl PK, Maina T, Mansi R, Von Guggenberg E, Joosten L, Sosabowski JK, Breeman WA, De Blois E, Koelewijn S, Melis M, Waser B, Beetschen K, Reubi JC, De Jong M * The EEE project(449 views) Proc Int Cosm Ray Conf Icrc Universidad Nacional Autonoma De Mexico, 2007; 5(HEPART2): 977-980. Impact Factor:0 ViewExport to BibTeXExport to EndNote