Hemoglobin structure/function and globin-gene evolution in the Arctic fish Liparis tunicatus(389 views) Giordano D, Vergara A, Lee HC, Peisach J, Balestrieri M, Mazzarella L, Parisi E, Di Priseo G, Verde C
Gene (ISSN: 0378-1119), 2007 Dec 30; 406(1-2): 58-68.
Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy
Dipartimento di Chimica, Università degli Studi di Napoli Federico II, Complesso Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy
Department of Physiology and Biophysics, Albert Einstein College of Medicine, Yeshiva University, 1300 Morris Park Avenue, New York, NY 10461, United States
References: Abascal, F., Zardoya, R., Posada, D., ProtTest: selection of best-fit models of protein evolution (2005) Bioinformatics, 21, pp. 2104-210
Blumberg, W.E., Peisach, J., Low-spin ferric forms of hemoglobin and other heme proteins (1972) Wenner-Gren Cent. Int. Symp. Ser., 18, pp. 219-225
Bonaventura, J., Gillen, R.G., Riggs, A., The hemoglobin of the Crosspterygian fish, Latimeria chalumnae(Smith) (1974) Arch. Biochem. Biophys., 163, pp. 728-734
Boffi, A., Takahashi, S., Spagnolo, C., Rousseau, D.L., Chiancone, E., Structural characterization of oxidized dimeric Scapharca inaequivalvis hemoglobin by resonance Raman spectroscopy (1994) J. Biol. Chem., 269, pp. 20437-20440
Brauer, A.W., Oman, C.L., Margolies, M.N., Use of o-phthalaldehyde to reduce background during automated Edman degradation (1984) Anal. Biochem., 137, pp. 134-142
Brey, T., Antarctic benthic diversity (1994) Nature, 368, p. 297
Chomczynski, P., Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction (1987) Anal. Biochem., 162, pp. 156-159
Cupane, A., Modification of α-chain or β-chain heme pocket polarity by Val (E11)→Thr substitution has different effects on the steric, dynamic, and functional properties of human recombinant hemoglobin. Deoxy derivatives (1997) J. Biol. Chem., 272, pp. 26271-26278
D'Avino, R., di Prisco, G., Antarctic fish haemoglobin: an outline of the molecular structure and oxygen binding properties. I. Molecular structure (1988) Comp. Biochem. Physiol., 90 B, pp. 579-584
Dettaï, A., Lecointre, G., In search for notothenioid (Teleostei) relatives (2004) Antarct. Sci., 16, pp. 71-85
di Prisco, G., Condò, S.G., Tamburrini, M., Giardina, B., Oxygen transport in extreme environments (1991) Trends Biochem. Sci., 16, pp. 471-474
Eastman, J.T., Comparison of the Antarctic and Arctic fish faunas (1997) Cybium, 12, pp. 276-287
Eastman, J.T., The nature of the diversity of Antarctic fishes (2005) Polar Biol., 28, pp. 93-107
Eastman, J.T., McCune, A.R., Fishes on the Antarctic continental shelf: evolution of a marine species flock? (2000) J. Fish Biol., 57 (SUPPL. A), pp. 84-102
Guindon, S., Gascuel, O., A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood (2003) Syst. Biol., 52, pp. 696-704
Ikeda-Saito, M., Coordination structure of the ferric heme iron in engineered distal histidine myoglobin mutants (1992) J. Biol. Chem., 267, pp. 22843-22852
Ilari, A., Bonamore, A., Farina, A., Johnson, K., Boffi, A., The X-ray structure of ferric Escherichia coli flavohemoglobin reveals an unexpected geometry of the distal heme pocket (2002) J. Biol. Chem., 26, pp. 23725-23732
Landon, M., Cleavage at aspartyl-prolyl bonds (1977) Methods Enzymol., 47, pp. 145-149
Marmo Moreira, L., Lima Poli, A., Costa-Filho, A.J., Imasato, H., Pentacoordinate and hexacoordinate ferric hemes in acid medium: EPR, UV-Vis and CD studies of the giant extracellular hemoglobin of Glossoscolex paulistus (2006) Biophys. Chem., 124, pp. 62-72
Mathews, H.J., Rohlfs, R.J., Olson, J.S., Tame, J., Renaud, J.P., Nagai, K., The effects of E7 and E11 mutations on the kinetics of ligand binding to R state human hemoglobin (1989) J. Biol. Chem., 264, pp. 16573-16583
Mazzarella, L., Minimal structural requirements for Root effect: crystal structure of the cathodic hemoglobin isolated from the Antarctic fish Trematomus newnesi (2006) Proteins Struct. Funct. Bioinf., 62, pp. 316-321
Miya, M., Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences (2003) Mol. Phylogenet. Evol., 26, pp. 121-138
Nagai, K., Distal residues in the oxygen binding site of haemoglobin studied by protein engineering (1987) Nature, 329, pp. 858-860
Quillin, M., Arduini, R., Olson, J., Phillips, G.J., High-resolution crystal structures of distal histidine mutants of sperm whale myoglobin (1993) J. Mol. Biol., 234, pp. 140-155
Rambaut, A., Grassly, N.C., Seq-gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic tree (1997) Comput. Appl. Biosci., 13, pp. 235-238
Rodewald, K., Stangl, A., Braunitzer, G., Primary structure, biochemical and physiological aspects of hemoglobin from South American lungfish (Lepidosiren paradoxus, Dipnoi) (1984) Hoppe Seylers Z. Physiol. Chem., 365, pp. 639-649
Sambrook, J., Fritsch, E.F., Maniatis, T., (1989) Molecular Cloning: a Laboratory Manual. 2nd edn., , Cold Spring Harbor Laboratory Press, Cold Spring Harbor
Smulevich, G., Feis, A., Howes, B.D., Fifteen years of Raman spectroscopy of engineered heme containing peroxidases: what have we learned? (2005) Acc. Chem. Res., 38, pp. 433-440
Stam, W.T., Beintema, J.J., D'Avino, R., Tamburrini, M., di Prisco, G., Molecular evolution of hemoglobins of Antarctic fishes (Notothenioidei) (1997) J. Mol. Evol., 45, pp. 437-445
Tamburrini, M., Brancaccio, A., Ippoliti, R., di Prisco, G., The amino acid sequence and oxygen-binding properties of the single haemoglobin of the cold-adapted Antarctic teleost Gymnodraco acuticeps (1992) Arch. Biochem. Biophys., 292, pp. 295-302
Tamburrini, M., Condò, S.G., di Prisco, G., Giardina, B., Adaptation to estreme environments: structure-function relationships in Emperor penguin haemoglobin (1994) J. Mol. Biol., 237, pp. 615-621
Tamburrini, M., D'Avino, R., Fago, A., Carratore, V., Kunzmann, A., di Prisco, G., The unique haemoglobin system of Pleuragramma antarcticum, an Antarctic migratory teleost: structure and function of the three components (1996) J. Biol. Chem., 271, pp. 23780-23785
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools (1997) Nucleic Acids Res., 25, pp. 4876-4882
Verde, C., Carratore, V., Riccio, A., Tamburrini, M., Parisi, E., di Prisco, G., The functionally distinct hemoglobins of the Arctic spotted wolffish Anarhichas minor (2002) J. Biol. Chem., 277, pp. 36312-36320
Verde, C., Balestrieri, M., de Pascale, D., Pagnozzi, D., Lecointre, G., di Prisco, G., The oxygen-transport system in three species of the boreal fish family Gadidae. Molecular phylogeny of haemoglobin (2006) J. Biol. Chem., 281, pp. 22073-22084
Verde, C., Parisi, E., di Prisco, G., The evolution of hemoglobin of thermal adaptation in polar fish (2006) Gene, 385, pp. 137-145
Weber, R.E., Jensen, F.B., Cox, R.P., Analysis of teleost haemoglobin by Adair and Monod-Wyman-Changeux models: effects of nucleoside triphosphates and pH on oxygenation of tench haemoglobin (1987) J. Comp. Physiol., B, 157, pp. 145-152
Weber, R.E., Isohemoglobin differentiation in the bimodal-breathing Amazon catfish Hoplosternum littorale (2000) J. Biol. Chem., 275, pp. 17297-17305
Blumberg, W. E., Peisach, J., Low-spin ferric forms of hemoglobin and other heme proteins (1972) Wenner-Gren Cent. Int. Symp. Ser., 18, pp. 219-225
Brauer, A. W., Oman, C. L., Margolies, M. N., Use of o-phthalaldehyde to reduce background during automated Edman degradation (1984) Anal. Biochem., 137, pp. 134-142
Dayton, P. K., Mordida, B. J., Bacon, F., Polar marine communities (1994) Am. Zool., 34, pp. 90-99
Detta, A., Lecointre, G., In search for notothenioid (Teleostei) relatives (2004) Antarct. Sci., 16, pp. 71-85
Eastman, J. T., Comparison of the Antarctic and Arctic fish faunas (1997) Cybium, 12, pp. 276-287
Eastman, J. T., The nature of the diversity of Antarctic fishes (2005) Polar Biol., 28, pp. 93-107
Eastman, J. T., McCune, A. R., Fishes on the Antarctic continental shelf: evolution of a marine species flock? (2000) J. Fish Biol., 57 (SUPPL. A), pp. 84-102
Mathews, H. J., Rohlfs, R. J., Olson, J. S., Tame, J., Renaud, J. P., Nagai, K., The effects of E7 and E11 mutations on the kinetics of ligand binding to R state human hemoglobin (1989) J. Biol. Chem., 264, pp. 16573-16583
Stam, W. T., Beintema, J. J., D'Avino, R., Tamburrini, M., di Prisco, G., Molecular evolution of hemoglobins of Antarctic fishes (Notothenioidei) (1997) J. Mol. Evol., 45, pp. 437-445
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., Higgins, D. G., The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools (1997) Nucleic Acids Res., 25, pp. 4876-4882
Weber, R. E., Jensen, F. B., Cox, R. P., Analysis of teleost haemoglobin by Adair and Monod-Wyman-Changeux models: effects of nucleoside triphosphates and pH on oxygenation of tench haemoglobin (1987) J. Comp. Physiol., B, 157, pp. 145-152
Weber, R. E., Isohemoglobin differentiation in the bimodal-breathing Amazon catfish Hoplosternum littorale (2000) J. Biol. Chem., 275, pp. 17297-17305
Hemoglobin structure/function and globin-gene evolution in the Arctic fish Liparis tunicatus
The importance of the Arctic, in contributing to the knowledge of the overall ensemble of adaptive processes influencing the evolution of marine organisms, calls for investigations on molecular adaptations in Arctic fish. Unlike the vast majority of Antarctic Notothenioidei, several Arctic species display high hemoglobin multiplicity. The blood of four species, the spotted wolffish of the family Anarhichadidae and three Gadidae, contains three functionally distinct major components. Similar to many Antarctic notothenioids, Arctic Liparis tunicatus (suborder Cottoidei, family Liparidae) has one major hemoglobin (Hb 1) accompanied by a minor component (Hb 2). This paper reports the structural and functional characterisation of Hb 1 of L. tunicatus. This hemoglobin shows low oxygen affinity, and pronounced Bohr and Root effects. The amino-acid sequence of the beta chain displays an unusual substitution in NA2 (beta 2) at the phosphate-binding site, and the replacement of Val E11 (beta 67) with Ile. Similar to some Antarctic fish Hbs, electron paramagnetic resonance spectra reveal the fort-nation of a ferric penta-coordinated species even at physiological pH. The amino-acid sequences have also been used to gain insight into the evolutionary history of globins of polar fish. L. tunicatus globins appear close to the notothenioid clades as predicted by teleostean phylogenies. Close phylogenetic relationships between Cottoidei and Notothenioidei, together with their life style, seem to be the main factor driving the globin-sequence evolution. (C) 2007 Elsevier B.V. All rights reserved.
Hemoglobin structure/function and globin-gene evolution in the Arctic fish Liparis tunicatus
Kállay C, Dávid A, Timári S, Nagy EM, Sanna D, Garribba E, Micera G, De Bona P, Pappalardo G, Rizzarelli E, Sóvágó I * Copper(II) complexes of rat amylin fragments(357 views) Dalton T (ISSN: 1477-9234, 1477-9226, 1477-9234electronic), 2011 Oct 14; 40(38): 9711-9721. Impact Factor:3.838 ViewExport to BibTeXExport to EndNote
Aloj L, Aurilio M, Rinaldi V, D'Ambrosio L, Tesauro D, Peitl PK, Maina T, Mansi R, Von Guggenberg E, Joosten L, Sosabowski JK, Breeman WA, De Blois E, Koelewijn S, Melis M, Waser B, Beetschen K, Reubi JC, De Jong M * The EEE project(449 views) Proc Int Cosm Ray Conf Icrc Universidad Nacional Autonoma De Mexico, 2007; 5(HEPART2): 977-980. Impact Factor:0 ViewExport to BibTeXExport to EndNote