Keywords: Asparagine, Deamidation, Peptide Bond Cleavage, Succinimide, Article, Peptide Analysis, Priority Journal, Protein Processing, Kinetics, Models, Chemical, Oligopeptides, Protein Splicing,
Affiliations: Ctro. di Studio di B., CNR, Napoli, Italy
Facoltà di Sci. Ambientali, Seconda Università di Napoli, Caserta, Italy
Dipto. di Scienze Farmaceutiche, Università di Ferrara, Ferrara, Italy
University Chemical Laboratory, Cambridge, United Kingdom
Dipartimento di Chimica, via Mezzocannone 4, I-80134 Napoli, Italy
Facolt di Sci. Ambientali, Seconda Universit di Napoli, Caserta, Italy
References: Bhatt, N.P., Patel, K., Borchardt, R.T., Chemical pathways of peptide degradation. I. Deamidation of adrenocorticotropic hormone (1990) Pharm. Res., 7, pp. 593-59
Bodanszky, M., Bodanszky, A., (1984) The Practice of Peptide Synthesis, , Berlin: Springer-Verlag
Bolton, P.D., Hydrolysis of amides. II. Substituent effect in dilute acid and alkali (1966) Aust. J. Chem., 19, pp. 1013-1021
Brennan, T.W., Clarke, S., Mechanism of cleavage at Asn 148 during the maturation of Jack bean concanavalin A (1993) Biomed. Biophys. Res. Commun., 193, pp. 1031-1037
Capasso, S., Kirby, A.J., Salvadori, S., Sica, F., Zagari, A., Kinetics and mechanism of the reversible isomerization of aspartic acid residue in tetrapeptides (1995) J. Chem. Soc. Perkin Trans., 2, pp. 437-442
Capasso, S., Mazzarella, L., Sica, F., Zagari, A., Salvadori, S., Kinetic and mechanism of succinimide ring formation in the deamidation process of asparagine residues (1993) J. Chem. Soc. Perkin Trans., 2, pp. 679-682
Capasso, S., Sica, F., Zagari, A., Identification of aminosuccinyl residues in peptides by second-derivative ultraviolet spectrometry (1987) Peptides, 8, pp. 791-796
Connors, K.A., (1990) Chemical Kinetics, the Study of Reaction Rates in Solution, pp. 245-309. , New York: VCH
Geiger, T., Clarke, S., Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides (1987) J. Biol. Chem., 262, pp. 785-794
Koonin, E.V., A protein splice-junction motif in hedgehog family proteins (1995) Trends Biol. Sci., 20, pp. 141-142
Meinwald, C.Y., Stimson, E.R., Scheraga, H.A., Deamidation of the asparaginyl-glycyl sequence (1986) Int. J. Pept. Protein Res., 28, pp. 79-84
Molday, R.S., Kallen, R.G., Substituent effects on amide hydrogen exchange rates in aqueous solution (1972) J. Am. Chem. Soc., 94, pp. 6739-6745
Sondheimer, E., Holley, R.W., Imide from asparagine and glutamine (1954) J. Am. Chem. Soc., 76, pp. 2467-2470
Violand, B.N., Schlittler, M.R., Toren, P.C., Siegel, N.R., Formation of isoaspartate 99 in bovine and porcine somatotropins (1990) J. Prot. Chem., 9, pp. 109-117
Willi, A.V., Homogeneous catalysis of organic reactions (mainly acid-base) (1977) Comprehensive Chemical Kinetics, 8, pp. 1-95. , Bamford, C. H.
Tipper, C. F. H., Eds. Amsterdam: Elsevier
Bhatt, N. P., Patel, K., Borchardt, R. T., Chemical pathways of peptide degradation. I. Deamidation of adrenocorticotropic hormone (1990) Pharm. Res., 7, pp. 593-59
Bolton, P. D., Hydrolysis of amides. II. Substituent effect in dilute acid and alkali (1966) Aust. J. Chem., 19, pp. 1013-1021
Brennan, T. W., Clarke, S., Mechanism of cleavage at Asn 148 during the maturation of Jack bean concanavalin A (1993) Biomed. Biophys. Res. Commun., 193, pp. 1031-1037
Connors, K. A., (1990) Chemical Kinetics, the Study of Reaction Rates in Solution, pp. 245-309. , New York: VCH
Koonin, E. V., A protein splice-junction motif in hedgehog family proteins (1995) Trends Biol. Sci., 20, pp. 141-142
Meinwald, C. Y., Stimson, E. R., Scheraga, H. A., Deamidation of the asparaginyl-glycyl sequence (1986) Int. J. Pept. Protein Res., 28, pp. 79-84
Molday, R. S., Kallen, R. G., Substituent effects on amide hydrogen exchange rates in aqueous solution (1972) J. Am. Chem. Soc., 94, pp. 6739-6745
Violand, B. N., Schlittler, M. R., Toren, P. C., Siegel, N. R., Formation of isoaspartate 99 in bovine and porcine somatotropins (1990) J. Prot. Chem., 9, pp. 109-117
Willi, A. V., Homogeneous catalysis of organic reactions (mainly acid-base) (1977) Comprehensive Chemical Kinetics, 8, pp. 1-95. , Bamford, C. H.
Kinetics and mechanism of the cleavage of the peptide bond next to asparagine
The spontaneous cleavage reaction of the tetrapeptide Piv-Gly Asn-Sar-Gly-NHtBu to the C-terminal dipeptide and N-terminal succinimide dipeptide proceeds through pre-equilibrium deprotonation of the amide group of the asparagine side chain, Followed by intramolecular nucleophilic attack of nitrogen on the peptide carbonyl carbon atom. General acid-catalyzed breakdown of the intermediate then gives the products. According to this mechanism, the reaction rate strongly increases with pH and buffer concentration.
Kinetics and mechanism of the cleavage of the peptide bond next to asparagine
No results.
Kinetics and mechanism of the cleavage of the peptide bond next to asparagine