Control of the structural stability of α-crystallin under thermal and chemical stress: The role of carnosine(415 views) Villari V, Attanasio F, Micali N
Keywords: Agglomeration, Hydrophobicity, Light Scattering, Proteins, Stability, Hydrophobic Interactions, Protein Aggregation, Quaternary Structure, Research Interests, Small Angle X-Rays, Stress Condition, Structural Stabilities, Temperature Increase, Chemical Stability,
Affiliations: *** IBB - CNR ***
CNR-IPCF Istituto per i Processi Chimico-Fisici, Viale F. Stagno dAlcontres 37Messina, Italy
CNR-IBB Istituto di Biostrutture e Bioimmagini, via P. Gaifami 18Catania, Italy
References: De Jong, W., (1981) Molecular and Cellular Biology of the Eye Lens, pp. 221-278. , Bloemendal, H. Wiley: New Yor
Derham, B., Harding, J., Effects of Modifications of α-Crystallin on its Chaperone and Other Properties (2002) Biochem. J., 364, pp. 711-717
Horwitz, J., α-Crystallin Can Function as a Molecular Chaperone (1992) Proc. Natl. Acad. Sci. U.S.A., 89, pp. 10449-10453
Bloemendal, H., (1981) Molecular and Cellular Biology of the Eye Lens, pp. 221-278. , Wiley: New York
Spector, A., Li, L.-K., Augusteyn, R., Schneider, A., Freund, T., α-Crystallin. the Isolation and Characterization of Distinct Macromolecular Fractions (1971) Biochem. J., 124, pp. 337-343
Das, K., Surewicz, W., Temperature-Induced Exposure of Hydrophobic Surfaces and its Effect on Chaperone Activity of α-Crystallin (1995) FEBS Lett., 369, pp. 321-325
Raman, B., Ramakrishna, T., Rao, C., Temperature-Dependent Chaperone-Like Activity of α-Crystallin (1995) FEBS Lett., 365, pp. 133-136
Palmieri, V., Maulucci, G., Maiorana, A., Papi, M., De Spirito, M., α-Crystallin Modulates its Chaperone Activity by Varing the Exposed Surface (2013) ChemBioChem, 14, pp. 2362-2370
Srinivas, V., Raman, B., Sridhar Rao, K., Ramakrishna, T., Mohan Rao, C., Arginine Hydrochloride Enhances the Dynamics of Subunit Assembly and the Chaperone-Like Activity of α-Crystallin (2005) Mol. Vision, 11, pp. 249-255
Ecroyd, H., Carver, J., The Effect of Small Molecules in Modulating the Chaperone Activity of αb-Crystallin Against Ordered and Disordered Protein Aggregation (2008) FEBS J., 275, pp. 935-947
Rasmussen, T., Van De Weert, M., Jiskoot, W., Kasimova, M.R., Thermal and Acid Denaturation of Bovine Lens α-Crystallin (2011) Proteins, 79, pp. 1747-1758
Gesierich, U., Pfeil, W., The Conformational Stability of α-Crystallin is Rather Low: Calorimetric Results (1996) FEBS Lett., 393, pp. 151-154
Surewicz, W., Olesen, P., On the Thermal-Stability of α-Crystallin - A New Insight from Infrared-Spectroscopy (1995) Biochemistry, 34, pp. 9655-9660
Farnsworth, P., Groth-Vasselli, B., Greenfield, N., Singh, K., Effects of Temperature and Concentration on Bovine Lens α-Crystallin Secondary Structure: A Circular Dichroism Spectroscopic Study (1997) Int. J. Biol. Macromol., 20, pp. 283-291
Das, B., Liang, J., Chakrabarti, B., Heat-Induced Conformational Change and Increased Chaperone Activity of Lens α-Crystallin (1997) Curr. Eye Res., 16, pp. 303-309
Wang, K., Spector, A., The Chaperone Activity of Bovine α-Crystallin. Interaction with Other Lens Crystallins in Native and Denatured States (1994) J. Biol. Chem., 269, pp. 13601-13608
Lee, J., Satoh, T., Shinoda, H., Samejima, T., Wu, S., Chiou, S., Effect of Heat-Induced Structural Perturbation of Secondary and Tertiary Structures on the Chaperone Activity of α-Crystallin (1997) Biochem. Biophys. Res. Commun., 237, pp. 277-282
Raman, B., Rao, C., Chaperone-Like Activity and Temperature induced Structural Changes of α-Crystallin (1997) J. Biol. Chem., 272, pp. 23559-23564
Sun, T.-X., Liang, J.-J.N., Intermolecular Exchange and Stabilization of Recombinant Human αa- and αb-Crystallin (1998) J. Biol. Chem., 273, pp. 286-290
Van Boekel, M., De Lange, F., De Grip, W., De Jong, W., Eye Lens αa- and αb-Crystallin: Complex Stability versus Chaperone-Like Activity (1999) Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 1434, pp. 114-123
Vanhoudt, J., Abgar, S., Aerts, T., Clauwaert, J., A Small-Angle X-Ray Solution Scattering Study of Bovine α-Crystallin (2000) Eur. J. Biochem., 267, pp. 3848-3858
Siezen, R., Hoenders, H., The Quaternary Structure of Bovine α-Crystallin. Surface Probing by Limited Proteolysis in vitro (1979) Eur. J. Biochem., 96, pp. 431-440
Tardieu, A., Laporte, D., Licinio, P., Krop, B., Delaye, M., Calf Lens α-Crystallin Quaternary Structure a Three-Layer Tetrahedral Model (1986) J. Mol. Biol., 192, pp. 711-724
Walsh, M., Sen, A., Chakrabarti, B., Micellar Subunit Assembly in a Three-layer Model of Oligomeric α-Crystallin (1991) J. Biol. Chem., 266, pp. 20079-20084
Carver, J., Aquilina, J., Truscott, R., A Possible Chaperone-like Quaternary Structure for α-Crystallin (1994) Exp. Eye Res., 59, pp. 231-234
Augusteyn, R., Stevens, A., Macromolecular Structure of the Eye Lens (1998) Prog. Polym. Sci., 23, pp. 375-413
Groenen, P., Merck, K., De Jong, W., Bloemendal, H., Structure and Modifications of the Junior Chaperone α-Crystallin: From Lens Transparency to Molecular Pathology (1994) Eur. J. Biochem., 225, pp. 1-19
Morris, A., Aquilina, J., Evidence for Specific Subunit Distribution and Interactions in the Quaternary Structure of α-Crystallin (2010) Proteins: Struct., Funct., Bioinf., 78, pp. 2546-2553
Yan, H., Harding, J., Carnosine Inhibits Modifications and Decreased Molecular Chaperone Activity of Lens α-Crystallin Induced by Ribose and Fructose 6-Phosphate (2006) Mol. Vision, 12, pp. 205-214
Seidler, N., Yeargans, G., Morgan, T., Carnosine Disaggregates Glycated α-Crystallin: An in Vitro Study (2004) Arch. Biochem. Biophys., 427, pp. 110-115
Attanasio, F., Cascio, C., Fisichella, S., Nicoletti, V., Pignataro, B., Savarino, A., Rizzarelli, E., Trehalose Effects on α-Crystallin Aggregates (2007) Biochem. Biophys. Res. Commun., 354, pp. 899-905
McFarland, G., Holliday, R., Retardation of the Senescence of Cultured Human Diploid Fibroblasts by Carnosine (1994) Exp. Cell Res., 212, pp. 167-175
Gariballa, S., Sinclair, A., Carnosine: Physiological Properties and Therapeutic Potential (2000) Age Ageing, 29, pp. 207-210
Hipkiss, A., Michaelis, J., Syrris, P., Non-Enzymatic Glycosylation of the Dipeptide L-Carnosine, a Potential Anti-Protein-Cross-Linking Agent (1995) FEBS Lett., 371, pp. 81-85
Brownson, C., Hipkiss, A., Carnosine Reacts with a Glycated Protein (2000) Free Radicals Biol. Med., 28, pp. 1564-1570
Attanasio, F., Cataldo, S., Fisichella, S., Nicoletti, S., Nicoletti, V., Pignataro, B., Savarino, A., Rizzarelli, E., Protective Effects of L- and D- Carnosine on α-Crystallin Amyloid Fibril Formation: Implications for Cataract Disease (2009) Biochemistry, 48, pp. 6522-6531
Chu, B., (1991) Laser Light Scattering-Basic Principle and Practice, pp. 1-343. , Academic Press: San Diego, CA
Villari, V., Mazzaglia, A., Darcy, R., Odriscoll, C.M., Micali, N., Nanostructures of Cationic Amphiphilic Cyclodextrin Complexes with DNA (2013) Biomacromolecules, 14, pp. 811-817
Svergun, D.I., Determination of the Regularization Parameter in Indirect-Transform Methods Using Perceptual Criteria (1992) J. Appl. Crystallogr., 25, pp. 495-503
Finet, S., Tardieu, A., α-Crystallin Interaction Forces Studied by Small Angle X-Ray Scatteringand Numerical Simulations (2001) J. Cryst. Growth, 232, pp. 40-49
Villari, V., Micali, N., Light Scattering as Spectroscopic Tool for the Study of Disperse Systems Useful in Pharmaceutical Sciences (2008) J. Pharm. Sci., 97, pp. 1703-1730
Kawahara, K., Tanford, C., Viscosity and Density of Aqueous Solutions of Urea and Guanidine Hydrochloride (1966) J. Biol. Chem., 241, pp. 3228-3232
Skouri-Panet, F., Quevillon-Cheruel, S., Michiel, M., Tardieu, A., Finet, S., Shsps under Temperature and Pressure: The Opposite Behaviour of Lens α-Crystallins and Yeast HSP26 (2006) Biochim. Biophys. Acta, 1764, pp. 372-383
Krivandin, A.V., Kuklin, A.I., Muranov, K.O., Murugova, T.N., Kozlov, S.S., Genkina, N.K., Heat-Induced Structural Transitions of α-Crystallin Studied by Small-Angle Neutron Scattering (2012) J. Phys.: Conf. Ser., 351, p. 012008
Bassi, F., Arcovito, G., Despirito, M., Mordente, A., Martorana, G., Self-Similarity Properties of α-Crystallin Supramolecular Aggregates (1995) Biophys. J., 69, pp. 2720-2727
Burchard, W., (1996) Light Scattering. Principles and Development, pp. 439-476. , Brown, W. Clarendon Press: Oxford, U.K
Attanasio, F., Convertino, M., Magno, A., Caflisch, A., Corazza, A., Haridas, H., Esposito, G., Milardi, D., Carnosine Inhibits Aβ42 Aggregation by Perturbing the H-Bond Network in and Around the Central Hydrophobic Cluster (2013) ChemBioChem, 14, pp. 583-592
Lim, W.K., Rosgen, J., Englander, S.W., Urea, but not Guanidinium, Destabilizes Proteins by Forming Hydrogen Bonds to the Peptide Group (2009) Proc. Natl. Acad. Sci. U.S.A., 106, pp. 2595-2600
Horwitz, J., -Crystallin Can Function as a Molecular Chaperone (1992) Proc. Natl. Acad. Sci. U. S. A., 89, pp. 10449-10453
Sun, T. -X., Liang, J. -J. N., Intermolecular Exchange and Stabilization of Recombinant Human a- and b-Crystallin (1998) J. Biol. Chem., 273, pp. 286-290
Svergun, D. I., Determination of the Regularization Parameter in Indirect-Transform Methods Using Perceptual Criteria (1992) J. Appl. Crystallogr., 25, pp. 495-503
Krivandin, A. V., Kuklin, A. I., Muranov, K. O., Murugova, T. N., Kozlov, S. S., Genkina, N. K., Heat-Induced Structural Transitions of -Crystallin Studied by Small-Angle Neutron Scattering (2012) J. Phys.: Conf. Ser., 351, p. 012008
Lim, W. K., Rosgen, J., Englander, S. W., Urea, but not Guanidinium, Destabilizes Proteins by Forming Hydrogen Bonds to the Peptide Group (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 2595-2600
Control of the structural stability of α-crystallin under thermal and chemical stress: The role of carnosine
The structural properties of α-crystallin, the major protein of the eye lens of mammals, in aqueous solution are investigated by means of small angle X-ray and dynamic light scattering. The research interest is devoted in particular to the effect of carnosine in protecting the protein under stress conditions, like temperature increase and presence of denaturant (guanidinium-HCl). The results suggest that carnosine interacts, through mechanisms involving hydrophobic interactions, with α-crystallin and avoids the structural changes in the quaternary structure induced by thermal and chemical stress. It is also shown that, if mediated by carnosine, the self-aggregation of α-crystallin induced by the denaturant at higher temperature can be controlled and even partially reversed. Therefore, carnosine is effective in preserving the structural integrity of the protein, suggesting the possibility of new strategies of intervention for preventing or treating pathologies related to protein aggregation, like cataracts.
Control of the structural stability of α-crystallin under thermal and chemical stress: The role of carnosine
No results.
Control of the structural stability of α-crystallin under thermal and chemical stress: The role of carnosine