γ-Glutamyl transpeptidase architecture: Effect of extra sequence deletion on autoprocessing, structure and stability of the protein from Bacillus licheniformis
γ-Glutamyl transpeptidase architecture: Effect of extra sequence deletion on autoprocessing, structure and stability of the protein from Bacillus licheniformis(318 views) Chi M-C, Lo Y-H, Chen Y-Y, Lin L-L, Merlino A
Department of Applied Chemistry, National Chiayi University, 300 Syuefu RoadChiayi City, Taiwan
Department of Chemical Sciences, University of Naples Federico IINapoli, Italy
Istituto di Biostrutture e Bioimmagini, CNRNapoli, Italy
References: Castellano, I., Merlino, A., γ-Glutamyltranspeptidases: Sequence, structure, biochemical properties, and biotechnological applications (2012) Cell. Mol. Life Sci., 69, pp. 3381-339
Keillor, J.W., Menard, A., Castonguay, R., γ-Glutamyl transpeptidase substrate specificity and catalytic mechanism (2004) J. Phys. Org. Chem., 17, pp. 529-536
Keillor, J.W., Castonguay, R., Lherbet, C., Pre-steady-state kinetics studies of rat kidney γ-glutamyl transpeptidase confirm its ping-pong mechanism (2005) Methods Enzymol., 401, pp. 449-467
Taniguchi, N., Ikeda, Y., γ-Glutamyl transpeptidase: Catalytic mechanism and gene expression (1998) Adv. Enzymol. Relat. Areas Mol. Biol., 72, pp. 239-278
Meister, A., Tate, S.S., Griffith, O.W., γ-Glutamyl transpeptidase from kidney (1981) Methods Enzymol., 77, pp. 237-253
Emdin, M., Passino, C., Pompella, A., γ-Glutamyltransferase as a cardiovascular risk factor (2006) Eur. Heart J., 27, pp. 2145-2146
Lee, D.H., Jacobs, D.R., Jr., Gross, M., γ-Glutamyltransferase is a predictor of incident diabetes and hypertension: The coronary artery risk development in young adults (CARDIA) study (2003) Clin. Chem., 49, pp. 1358-1366
Lee, D.H., Ha, M.H., Kim, J.H., γ-Glutamyltransferase and diabetes - A 4 year follow-up study (2003) Diabetologia, 46, pp. 359-364
Hanigan, M.H., γ-Glutamyl transpeptidase, a glutathionase: Its expression and function in carcinogenesis (1998) Chem. Biol. Interact., 111-112, pp. 333-342
Corti, A., Franzini, M., Paolicchi, A., γ-Glutamyltransferase of cancer cells at the crossroads of tumor progression, drug resistance and drug targeting (2010) Anticancer Res., 30, pp. 1169-1181
Wickham, S., Regan, N., West, M.B., Thai, J., Cook, P.F., Terzyan, S.S., Li, P.K., Hanigan, M.H., Inhibition of human γ-glutamyl transpeptidase: Development of more potent, physiologically relevant, uncompetitive inhibitors (2013) Biochem. J., 450, pp. 547-557
King, J.B., West, M.B., Cook, P.F., Hanigan, M.H., A novel, species-specific class of uncompetitive inhibitors of γ-glutamyl transpeptidase (2009) J. Biol. Chem., 284, pp. 9059-9065
Hanigan, M.H., Gallagher, B.C., Taylor, P.T., Jr., Large, M.K., Inhibition of γ-glutamyl transpeptidase activity by acivicin in vivo protects the kidney from cisplatin-induced toxicity (1994) Cancer Res., 54, pp. 5925-5929
Tuzova, M., Jean, J.-C., Hughey, R.P., Scism Brown, L.A., Cruikshank, W., Hiratake, J., Joyce-Brady, M., Inhibiting lung lining fluid glutathione metabolism with GGsTop as a novel treatment for asthma Front. Pharmacol.
Ferretti, M., Destro, T., Tosatto, S.C., γ-Glutamyl transferase in the cell wall participates in extracellular glutathione salvage from the root apoplast (2009) New Phytol., 181, pp. 115-126
Castellano, I., Di Salle, A., Merlino, A., Gene cloning and protein expression of γ-glutamyltranspeptidases from Thermus thermophilus and Deinococcus radiodurans: Comparison of molecular and structural properties with mesophilic counterparts (2011) Extremophiles, 15, pp. 259-270
Suzuki, H., Yamada, C., Kato, K., (2007) Amino Acids, 32, pp. 333-340
Suzuki, H., Miwa, C., Ishihara, S., A single amino acid substitution converts γ-glutamyltranspeptidase to a class IV cephalosporin acylase (glutaryl-7-aminocephalosporanic acid acylase) (2004) Appl. Environ. Microbiol., 70, pp. 6324-6328
Minami, H., Suzuki, H., Kumagai, H., A mutant Bacillus subtilis γ-glutamyl transpeptidase specialized in hydrolysis activity (2003) FEMS Microbiol. Lett., 224 (2), pp. 126-130
Suzuki, H., Izuka, S., Miyakawa, N., Enzymatic production of theanine, an 'umami' component of tea, from glutamine and ethylamine with bacterial γ-glutamyltranspeptidase (2002) Enzyme Microb. Technol., 31, pp. 884-889
Okada, T., Suzuki, H., Wada, K., Crystal structures of γ-glutamyltranspeptidase from Escherichia coli, a key enzyme in glutathione metabolism, and its reaction intermediate (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 6471-6476
Boanca, G., Sand, A., Barycki, J.J., Uncoupling the enzymatic and autoprocessing activities of Helicobacter pylori γ-glutamyltranspeptidase (2006) J. Biol. Chem., 281, pp. 19029-19037
Boanca, Sand, A., Okada, T., Autoprocessing of Helicobacter pylori γ-glutamyltranspeptidase leads to the formation of a threonine-threonine catalytic dyad (2007) J. Biol. Chem., 282, pp. 534-541
Pica, A., Russo Krauss, I., Castellano, I., Exploring the unfolding mechanism of γ-glutamyltranspeptidases: The case of the thermophilic enzyme from Geobacillus thermodenitrificans (2012) Biochim. Biophys. Acta-Proteins Proteomics, 1824, pp. 571-577
West, M.B., Hanigan, M.H., γ-Glutamyl transpeptidase is a heavily N-glycosylated heterodimer in HepG2 cells (2010) Arch. Biochem. Biophys., 504 (2), pp. 177-181
West, M.B., Wickham, S., Quinalty, L.M., Pavlovicz, R.E., Li, C., Hanigan, M.H., Autocatalytic cleavage of human γ-glutamyl transpeptidase is highly dependent on N-glycosylation at asparagine 95 (2011) J. Biol. Chem., 286, pp. 28876-28888
West, M.B., Chen, Y., Wickham, S., Novel insights into eukaryotic γ-glutamyltranspeptidase 1 from the crystal structure of the glutamate-bound human enzyme (2013) J. Biol. Chem., 288, pp. 31902-31913
Wada, K., Irie, M., Suzuki, H., Crystal structure of the halotolerant γ-glutamyltranspeptidase from Bacillus subtilis in complex with glutamate reveals a unique architecture of the solvent-exposed catalytic pocket (2010) FEBS J., 277, pp. 1000-1009
Lin, L.-L., Chou, P.R., Hua, Y.W., Overexpression, one-step purification, and biochemical characterization of a recombinant γ-glutamyltranspeptidase from Bacillus licheniformis (2006) Appl. Microbiol. Biotechnol., 73, pp. 103-112
Chi, M.-C., Chen, Y.-Y., Lo, H.-F., Lin, L.-L., Experimental evidence for the involvement of amino acid residue Glu398 in the autocatalytic processing of Bacillus licheniformis γ-glutamyltranspeptidase (2012) Febs Open Biol., 2, pp. 299-304
Tate, S.S., Meister, A., Interaction of γ-glutamyl transpeptidase with amino acids, dipeptides, and derivatives and analogs of glutathione (1974) J. Biol. Chem., 249, pp. 7593-7602
Böhm, G., Muhr, R., Jaenicke, R., Quantitative analysis of protein far UV circular dichroism spectra by neural networks (1992) Protein Eng., 5, pp. 191-195
Scholtz, J.M., Grimsley, G.R., Pace, C.N., Solvent denaturation of proteins and interpretations of the m value (2009) Methods Enzymol., 466, pp. 549-565
Lin, L.-L., Lin, M.-C., Chen, Y.-Y., Merlino, A., Low resolution X-ray structure of γ-glutamyltranspeptidase from Bacillus licheniformis: Opened active site cleft and a cluster of acid residues potentially involved in the recognition of a metal ion (2014) Biochim. Biophys. Acta Proteins Proteomics, 1844, pp. 1523-1529
Guex, N., Peitsch, M.C., Schwede, T., Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective (2009) Electrophoresis, 30, pp. 162-S173
Delano, W.L., (2010) New York: Schrödinger, LLC, 2010. The PyMOL Molecular Graphics System, Version 1.3r1
Kishore, D., Kundu, S., Kayastha, A.M., Thermal, chemical and pH induced denaturation of a multimeric β-galactosidase reveals multiple unfolding pathways (2012) PLoS One, 7 (11), p. 50380
Merlino, A., Russo Krauss, I., Castellano, I., De Vendittis, E., Rossi, B., Conte, M., Vergara, A., Sica, F., Structure and flexibility in cold-adapted iron superoxide dismutases: The case of the enzyme isolated from Pseudoalteromonas haloplanktis (2010) J. Struct. Biol., 172, pp. 343-352
Granata, V., Del Vecchio, P., Barone, G., Shehi, E., Fusi, P., Tortora, P., Graziano, G., Guanidine-induced unfolding of the Sso7d protein from the hyperthermophilic archaeon Sulfolobus solfataricus (2004) Int. J. Biol. Macromol., 34, pp. 195-201
Keillor, J. W., Menard, A., Castonguay, R., -Glutamyl transpeptidase substrate specificity and catalytic mechanism (2004) J. Phys. Org. Chem., 17, pp. 529-536
Keillor, J. W., Castonguay, R., Lherbet, C., Pre-steady-state kinetics studies of rat kidney -glutamyl transpeptidase confirm its ping-pong mechanism (2005) Methods Enzymol., 401, pp. 449-467
Lee, D. H., Jacobs, D. R., Jr., Gross, M., -Glutamyltransferase is a predictor of incident diabetes and hypertension: The coronary artery risk development in young adults (CARDIA) study (2003) Clin. Chem., 49, pp. 1358-1366
Lee, D. H., Ha, M. H., Kim, J. H., -Glutamyltransferase and diabetes - A 4 year follow-up study (2003) Diabetologia, 46, pp. 359-364
Hanigan, M. H., -Glutamyl transpeptidase, a glutathionase: Its expression and function in carcinogenesis (1998) Chem. Biol. Interact., 111-112, pp. 333-342
King, J. B., West, M. B., Cook, P. F., Hanigan, M. H., A novel, species-specific class of uncompetitive inhibitors of -glutamyl transpeptidase (2009) J. Biol. Chem., 284, pp. 9059-9065
Hanigan, M. H., Gallagher, B. C., Taylor, P. T., Jr., Large, M. K., Inhibition of -glutamyl transpeptidase activity by acivicin in vivo protects the kidney from cisplatin-induced toxicity (1994) Cancer Res., 54, pp. 5925-5929
West, M. B., Hanigan, M. H., -Glutamyl transpeptidase is a heavily N-glycosylated heterodimer in HepG2 cells (2010) Arch. Biochem. Biophys., 504 (2), pp. 177-181
West, M. B., Wickham, S., Quinalty, L. M., Pavlovicz, R. E., Li, C., Hanigan, M. H., Autocatalytic cleavage of human -glutamyl transpeptidase is highly dependent on N-glycosylation at asparagine 95 (2011) J. Biol. Chem., 286, pp. 28876-28888
West, M. B., Chen, Y., Wickham, S., Novel insights into eukaryotic -glutamyltranspeptidase 1 from the crystal structure of the glutamate-bound human enzyme (2013) J. Biol. Chem., 288, pp. 31902-31913
Lin, L. -L., Chou, P. R., Hua, Y. W., Overexpression, one-step purification, and biochemical characterization of a recombinant -glutamyltranspeptidase from Bacillus licheniformis (2006) Appl. Microbiol. Biotechnol., 73, pp. 103-112
Chi, M. -C., Chen, Y. -Y., Lo, H. -F., Lin, L. -L., Experimental evidence for the involvement of amino acid residue Glu398 in the autocatalytic processing of Bacillus licheniformis -glutamyltranspeptidase (2012) Febs Open Biol., 2, pp. 299-304
Tate, S. S., Meister, A., Interaction of -glutamyl transpeptidase with amino acids, dipeptides, and derivatives and analogs of glutathione (1974) J. Biol. Chem., 249, pp. 7593-7602
B hm, G., Muhr, R., Jaenicke, R., Quantitative analysis of protein far UV circular dichroism spectra by neural networks (1992) Protein Eng., 5, pp. 191-195
Scholtz, J. M., Grimsley, G. R., Pace, C. N., Solvent denaturation of proteins and interpretations of the m value (2009) Methods Enzymol., 466, pp. 549-565
Lin, L. -L., Lin, M. -C., Chen, Y. -Y., Merlino, A., Low resolution X-ray structure of -glutamyltranspeptidase from Bacillus licheniformis: Opened active site cleft and a cluster of acid residues potentially involved in the recognition of a metal ion (2014) Biochim. Biophys. Acta Proteins Proteomics, 1844, pp. 1523-1529
Delano, W. L., (2010) New York: Schr dinger, LLC, 2010. The PyMOL Molecular Graphics System, Version 1. 3r1
γ-Glutamyl transpeptidase architecture: Effect of extra sequence deletion on autoprocessing, structure and stability of the protein from Bacillus licheniformis
γ-Glutamyl transpeptidases (γ-GTs, EC 2.3.2.2) are a class of ubiquitous enzymes which initiate the cleavage of extracellular glutathione (γ-Glu-Cys-Gly, GSH) into its constituent glutamate, cysteine, and glycine and catalyze the transfer of its γ-glutamyl group to water (hydrolysis), amino acids or small peptides (transpeptidation). These proteins utilize a conserved Thr residue to process their chains into a large and a small subunit that then form the catalytically competent enzyme. Multiple sequence alignments have shown that some bacterial γ-GTs, including that from Bacillus licheniformis (BlGT), possess an extra sequence at the C-terminal tail of the large subunit, whose role is unknown. Here, autoprocessing, structure, catalytic activity and stability against both temperature and the chemical denaturant guanidinium hydrochloride of six BlGT extra-sequence deletion mutants have been characterized by SDS-PAGE, circular dichroism, intrinsic fluorescence and homology modeling. Data suggest that the extra sequence has a crucial role in enzyme activation and structural stability. Our results assist in the development of a structure-based interpretation of the autoprocessing reaction of γ-GTs and are helpful to unveil the molecular bases of their structural stability.
γ-Glutamyl transpeptidase architecture: Effect of extra sequence deletion on autoprocessing, structure and stability of the protein from Bacillus licheniformis
No results.
γ-Glutamyl transpeptidase architecture: Effect of extra sequence deletion on autoprocessing, structure and stability of the protein from Bacillus licheniformis
Aloj L, Aurilio M, Rinaldi V, D'Ambrosio L, Tesauro D, Peitl PK, Maina T, Mansi R, Von Guggenberg E, Joosten L, Sosabowski JK, Breeman WA, De Blois E, Koelewijn S, Melis M, Waser B, Beetschen K, Reubi JC, De Jong M * The EEE project(449 views) Proc Int Cosm Ray Conf Icrc Universidad Nacional Autonoma De Mexico, 2007; 5(HEPART2): 977-980. Impact Factor:0 ViewExport to BibTeXExport to EndNote