Keywords: Halophile, Halotolerant Protein, Molecular Evolution, Protein Stability, Protein Structure, Salt Adaptation, Carbonate Dehydratase, Cytochrome C, Ferredoxin, Fructuronate Reductase, Glucose Dehydrogenase, Malate Dehydrogenase, Peroxidase, Sodium Chloride, Aerobic Bacterium, Amino Acid Sequence, Anabaena, Anaerobic Bacterium, Archaeon, Bacillus Subtilis, Cyanobacterium, Dunaliella Salina, Fungus, Haloarcula Marismortui, Hydrogen Bond, Hydrophobicity, Methanococcus Vannielii, Nonhuman, Nucleotide Sequence, Priority Journal, Protein Denaturation, Protein Folding, Protein Halotolerance, Protein Secondary Structure, Protozoon, Review, Salinity, Salt Tolerance, Static Electricity, Physiological, Basic, Branched-Chain, Hydrogen Bonding, Models, Structure-Activity Relationship, Thermodynamics,
Affiliations: *** IBB - CNR ***
Dipartimento di Scienze e Tecnologie, Università Del Sannio, Benevento, Italy
Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant' Angelo, Via Cintia, I-80126 Napoli, Italy
Istituto di Biostrutture e Bioimmagini, CNR, Napoli, Italy
References: Kumar, S., Tsai, C.J., Nussinov, R., (2000) Protein Eng., 13, pp. 179-19
D'Amico, S., Gerday, C., Feller, G., (2001) J. Biol. Chem., 276, pp. 25791-25796
D'Amico, S., Claverie, P., Collins, T., Georlette, D., Gratia, E., Hoyoux, A., Meuwis, M.A., Gerday, C., (2002) Philos. Trans. R. Soc. Lond. B Biol. Sci., 357, pp. 917-925
Merlino, A., Russo Krauss, I., Castellano, I., De Vendittis, E., Rossi, B., Conte, M., Vergara, A., Sica, F., (2010) J. Struct. Biol., 172, pp. 343-352
De Lourdes Moreno, M., Pérez, D., García, M.T., Mellado, E., (2013) Life, 3, pp. 38-51
Cojoc, R., Merciu, S., Popescu, G., Dumitru, L., Kamekura, M., Enache, M., (2009) Rom. Biotechnol. Lett., 14, pp. 4658-4664
Eisenberg, H., Mevarech, M., Zaccai, G., (1992) Adv. Protein Chem., 43, pp. 1-62
Mellado, E., Ventosa, A., (2003) Microorganisms for Health Care, Food and Enzyme Production, pp. 233-256. , J.L. Barredo, Research Signpost Kerala, India
Gómez, J., Steiner, W.T., (2004) Food Technol. Biotechnol., pp. 223-235
Oren, A., (2010) Environ. Technol., 31, pp. 825-834
Salameh, M., Wiegel, J., (2007) Adv. Appl. Microbiol., 61, pp. 253-283
Dassarma, S., Dassarma, P., (2005) Encyclopedia of Life Sciences, , Wiley London
Kushner, D., (1978) Microbial Life in Extreme Environments, pp. 317-368. , D.J. Kushuner, Academic Press London
Ventosa, A., Nieto, J.J., Oren, A., (1998) Microbiol. Mol. Biol. Rev., 62, pp. 504-544
Madigan, M.T., Oren, A., (1999) Curr. Opin. Microbiol., 2, pp. 265-269
Madern, D., Ebel, C., Zaccai, G., (2000) Extremophiles, 4, pp. 91-98
Premkumar, L., Greenblatt, H.M., Bageshwar, U.K., Savchenko, T., Gokhman, I., Sussman, J.L., Zamir, A., (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 7493-7498
Ukani, H., Purohit, M.K., Georrge, J.J., Paul, S., Singh, S.P., (2011) J. Sci. Ind. Res., 70, pp. 976-998
Ng, W.V., Kennedy, S.P., Mahairas, G.G., Berquist, B., Pan, M., Shukla, H.D., Lasky, S.R., Dassarma, S., (2000) Proc. Natl. Acad. Sci. U. S. A., 97, pp. 12176-12181
Dassarma, S., Capes, M., Dassarma, P., (2008) Microbial Megaplasmids, pp. 3-30. , E. Schwartz, Springer-Verlag Berlin
Bolhuis, H., Palm, P., Wende, A., Falb, M., Rampp, M., Rodriguez-Valera, F., Pfeiffer, F., Oesterhelt, D., (2006) BMC Genomics, 7, p. 169
Mavromatis, K., Ivanova, N., Anderson, I., Lykidis, A., Hooper, S.D., Sun, H., Kunin, V., Kyrpides, N.C., (2009) PLoS One, 4, p. 4192
Chen, Y.G., Cui, X.L., Pukall, R., Li, H.M., Yang, Y.L., Xu, L.H., Wen, M.L., Jiang, C.L., (2007) Int. J. Syst. Evol. Microbiol., 57, pp. 2327-2332
Kushner, D., (1985) The Bacteria, 8, pp. 171-214. , Academic Press London
Madern, D., Zaccai, G., (2004) Biochimie, 86, pp. 295-303
Madern, D., Camacho, M., Rodriguez-Arnedo, A., Bonete, M.J., Zaccai, G., (2004) Extremophiles, 8, pp. 377-384
Lanyi, J.K., (1974) Bacteriol. Rev., 38, pp. 272-290
Anwar, T., Chauhan, R.S., (2012) Int. J. Adv. Biotechnol. Bioinforma., 1, pp. 69-78
Britton, K.L., Stillman, T.J., Yip, K.S., Forterre, P., Engel, P.C., Rice, D.W., (1998) J. Biol. Chem., 273, pp. 9023-9030
Baldacci, G., Guinet, F., Tillit, J., Zaccai, G., De Recondo, A.M., (1990) Nucleic Acids Res., 18, pp. 507-511
Kastritis, P.L., Papandreou, N.C., Hamodrakas, S.J., (2007) Int. J. Biol. Macromol., 41, pp. 447-453
Smole, Z., Nikolic, N., Supek, F., Smuc, T., Sbalzarini, I.F., Krisko, A., (2011) BMC Evol. Biol., 11, p. 26
Zhang, G., Huihua, G., Yi, L., (2013) Int. J. Biol. Macromol., 53, pp. 1-6
Ebrahimie, E., Ebrahimi, M., Sarvestani, N.R., Ebrahimi, M., (2011) Saline Syst., 7, p. 1
Pica, A., Russo Krauss, I., Castellano, I., La Cara, F., Graziano, G., Sica, F., Merlino, A., (2013) Biochim. Biophys. Acta, 1834, pp. 149-157
Benachenhou, N., Baldacci, G., (1991) Mol. Gen. Genet., 230, pp. 345-352
Frolow, F., Harel, M., Sussman, J.L., Mevarech, M., Shoham, M., (1996) Nat. Struct. Biol., 3, pp. 452-458
Marg, B.L., Schweimer, K., Sticht, H., Oesterhelt, D., (2005) Biochemistry, 44, pp. 29-39
Premkumar, L., Volkovitsky, M., Gokhman, I., Sussman, J.L., Zamir, A., Adaptation to life at high salt concentrations in archaea, bacteria, and eukarya (2005) Cellular Origin, Life in Extreme Habitats and Astrobiology, 9, pp. 503-515
Evilia, C., Hou, Y.M., (2006) Biochemistry, 45, pp. 6835-6845
Taupin, C.M., Hartlein, M., Leberman, R., (1997) Eur. J. Biochem., 243, pp. 141-150
Muller-Santos, M., De Souza, E.M., Pedrosa Fde, O., Mitchell, D.A., Longhi, S., Carriere, F., Canaan, S., Krieger, N., (2009) Biochim. Biophys. Acta, 1791, pp. 719-729
Jolley, K.A., Rusell, R.J.M., Hough, D.H., Danson, M.J., (1997) Eur. J. Biochem., 248, pp. 362-368
Zaccai, G., Cendrin, F., Haik, Y., Borochov, N., Eisenberg, H., (1989) J. Mol. Biol., 208, pp. 491-500
Ebel, C., Costenaro, L., Pascu, M., Faou, P., Kernel, B., Proust-De Martin, F., Zaccai, G., (2002) Biochemistry, 41, pp. 13234-13244
Wright, D.B., Banks, D.D., Lohman, J.R., Hilsenbeck, J.L., Gloss, L.M., (2002) J. Mol. Biol., 323, pp. 327-344
Richard, S.B., Madern, D., Garcin, E., Zaccai, G., (2000) Biochemistry, 39, pp. 992-1000
Esclapez, J., Camacho, M., Pire, C., Bonete, M.J., Biochemistry, genetics and molecular biology (2013) Genetic Manipulation of DNA and Protein - Examples from Current Research, , D. Figurski, 10.5772/34565 (Cap. 2)
Ferrer, J., Fisher, M., Burke, J., Sedelnikova, S.E., Baker, P.J., Gilmour, D.J., Bonete, M.J., Rice, D.W., (2001) Acta Crystallogr. D Biol. Crystallogr., 57, pp. 1887-1889
Irimia, A., Ebel, C., Madern, D., Richard, S.B., Cosenza, L.W., Zaccai, G., Vellieux, F.M., (2003) J. Mol. Biol., 326, pp. 859-873
Qvist, J., Ortega, G., Tadeo, X., Millet, O., Halle, B., (2012) J. Phys. Chem. B, 116, pp. 3436-3444
Graziano, G., (2010) Phys. Chem. Chem. Phys., 12, pp. 14245-14252
Riccio, A., Graziano, G., (2011) Proteins, 79, pp. 1739-1746
Graziano, G., (2012) Phys. Chem. Chem. Phys., 14, pp. 2769-2773
Lee, B., Richards, F.M., (1971) J. Mol. Biol., 55, pp. 379-400
Graziano, G., (2009) J. Phys. Chem. B, 113, pp. 11232-11239
Graziano, G., (2008) J. Chem. Phys., 109, p. 084506
Rees, D.C., Robertson, A.D., (2001) Protein Sci., 10, pp. 1187-1194
Elcock, A.H., McCammon, J.A., (1998) J. Mol. Biol., 280, pp. 731-748
Castellano, I., Merlino, A., Rossi, M., La Cara, F., (2010) Biochimie, 92, pp. 464-474
Pierotti, R.A., (1976) Chem. Rev., 76, pp. 717-726
Hummer, G., Garde, S., Garcia, A.E., Paulaitis, M.E., Pratt, L.R., (1998) Proc. Natl. Acad. Sci. U. S. A., 95, pp. 1552-1555
Russell, R. J., Gerike, U., Danson, M. J., Hough, D. W., Taylor, G. L., (1998) Structure, 6, pp. 351-361
G mez, J., Steiner, W. T., (2004) Food Technol. Biotechnol., pp. 223-235
Madigan, M. T., Oren, A., (1999) Curr. Opin. Microbiol., 2, pp. 265-269
Dassarma, S. L., Capes, M. D., Dassarma, P., Dassarma, S., (2010) Saline Syst., 6, p. 12
Ng, W. V., Kennedy, S. P., Mahairas, G. G., Berquist, B., Pan, M., Shukla, H. D., Lasky, S. R., Dassarma, S., (2000) Proc. Natl. Acad. Sci. U. S. A., 97, pp. 12176-12181
Kennedy, S. P., Ng, W. V., Salzberg, S. L., Hood, L., Dassarma, S., (2001) Genome Res., 11, pp. 1641-1650
Baliga, N. S., Bonneau, R., Facciotti, M. T., Pan, M., Glusman, G., Deutsch, E. W., Shannon, P., Ng, W. V., (2004) Genome Res., 14, pp. 2221-2234
Paul, S., Bag, S. K., Das, S., Harvill, E. T., Dutta, C., (2008) Genome Biol., 9, p. 70
Chen, Y. G., Cui, X. L., Pukall, R., Li, H. M., Yang, Y. L., Xu, L. H., Wen, M. L., Jiang, C. L., (2007) Int. J. Syst. Evol. Microbiol., 57, pp. 2327-2332
Lanyi, J. K., (1974) Bacteriol. Rev., 38, pp. 272-290
Britton, K. L., Stillman, T. J., Yip, K. S., Forterre, P., Engel, P. C., Rice, D. W., (1998) J. Biol. Chem., 273, pp. 9023-9030
Kastritis, P. L., Papandreou, N. C., Hamodrakas, S. J., (2007) Int. J. Biol. Macromol., 41, pp. 447-453
Marg, B. L., Schweimer, K., Sticht, H., Oesterhelt, D., (2005) Biochemistry, 44, pp. 29-39
Taupin, C. M., Hartlein, M., Leberman, R., (1997) Eur. J. Biochem., 243, pp. 141-150
Shi, W., Tang, X. F., Huang, Y., Gan, F., Tang, B., Shen, P., (2006) Extremophiles, 10, pp. 599-606
Jolley, K. A., Rusell, R. J. M., Hough, D. H., Danson, M. J., (1997) Eur. J. Biochem., 248, pp. 362-368
Wright, D. B., Banks, D. D., Lohman, J. R., Hilsenbeck, J. L., Gloss, L. M., (2002) J. Mol. Biol., 323, pp. 327-344
Richard, S. B., Madern, D., Garcin, E., Zaccai, G., (2000) Biochemistry, 39, pp. 992-1000
Rees, D. C., Robertson, A. D., (2001) Protein Sci., 10, pp. 1187-1194
Elcock, A. H., McCammon, J. A., (1998) J. Mol. Biol., 280, pp. 731-748
Pierotti, R. A., (1976) Chem. Rev., 76, pp. 717-726
Ashbaugh, H. S., Pratt, L. R., (2006) Rev. Mod. Phys., 78, pp. 159-178
Molecular bases of protein halotolerance
Halophilic proteins are stable and function at high salt concentration. Understanding how these molecules maintain their fold stable and avoid aggregation under harsh conditions is of great interest for biotechnological applications. This mini-review describes what is known about the molecular determinants of protein halotolerance. Comparisons between the sequences of halophilic/non-halophilic homologous protein pairs indicated that Asp and Glu are significantly more frequent, while Lys, Ile and Leu are less frequent in halophilic proteins. Homologous halophilic and non-halophilic proteins have similar overall structure, secondary structure content, and number of residues involved in the formation of H-bonds. On the other hand, on the halophilic protein surface, a decrease of nonpolar residues and an increase of charged residues are observed. Particularly, halophilic adaptation correlates with an increase of Asp and Glu, compensated by a decrease of basic residues, mainly Lys, on protein surface. A thermodynamic model, that provides a reliable explanation of the salt effect on the conformational stability of globular proteins, is presented. (C) 2014 Elsevier B.V. All fights reserved.
Aloj L, Aurilio M, Rinaldi V, D'Ambrosio L, Tesauro D, Peitl PK, Maina T, Mansi R, Von Guggenberg E, Joosten L, Sosabowski JK, Breeman WA, De Blois E, Koelewijn S, Melis M, Waser B, Beetschen K, Reubi JC, De Jong M * The EEE project(449 views) Proc Int Cosm Ray Conf Icrc Universidad Nacional Autonoma De Mexico, 2007; 5(HEPART2): 977-980. Impact Factor:0 ViewExport to BibTeXExport to EndNote