Liver fat in obesity: role of type 2 diabetes mellitus and adipose tissue distribution(417 views) Bozzetto L, Prinster A, Mancini M, Giacco R, De Natale C, Salvatore M, Riccardi G, Rivellese AA, Annuzzi G
Department of Medicine, University of Naples, Naples, Italy
Department of Metabolic Diseases, University of Naples, Naples, Italy
Department of Gastroenterology, University of Naples, Naples, Italy
Department of Clinical and Experimental Medicine, Federico II University, Naples, Italy.
Institute of Biostructure and Bioimage, National Research Council, Naples, Italy
SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy
Institute of Food Sciences, National Research Council, Avellino, Italy
Department of Biomorphological and Functional Science, Federico II University, Naples, Italy
References: Bellentani, S., Saccoccio, G., Masutti, F., Croce, L.S., Brandi, G., Sasso, F., Prevalence of and risk factors for hepatic steatosis in Northern Italy (2000) Ann Intern Med, 132, pp. 112-11
Luyckx, F.H., Desaive, C., Thiry, A., Dewe, W., Scheen, A.J., Gielen, J.E., Liver abnormalities in severely obese subjects: effect of drastic weight loss after gastroplasty (1998) Int J Obes Relat Metab Disord, 22, pp. 222-226
Gastaldelli, A., Cusi, K., Pettiti, M., Hardies, J., Miyazaki, Y., Berria, R., Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects (2007) Gastroenterology, 133, pp. 496-506
Bugianesi, E., McCullough, A.J., Marchesini, G., Insulin resistance: a metabolic pathway to chronic liver disease (2005) Hepatology, 42, pp. 987-1000
Cnop, M., Landchild, M.J., Vidal, J., Havel, P.J., Knowles, N.G., Carr, D.R., The concurrent accumulation of intra-abdominal and subcutaneous fat explains the association between insulin resistance and plasma leptin concentrations: distinct metabolic effects of two fat compartments (2002) Diabetes, 51, pp. 1005-1015
Ross, R., Aru, J., Freeman, J., Hudson, R., Janssen, I., Abdominal adiposity and insulin resistance in obese men (2002) Am J Physiol Endocrinol Metab, 282, pp. E657-E663
Marchesini, G., Brizi, M., Morselli-Labate, A.M., Bianchi, G., Bugianesi, E., McCullough, A.J., Association of nonalcoholic fatty liver disease with insulin resistance (1999) Am J Med, 107, pp. 450-455
Seppala-Lindroos, A., Vehkavaara, S., Hakkinen, A.M., Goto, T., Westerbacka, J., Sovijarvi, A., Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men (2002) J Clin Endocrinol Metab, 87, pp. 3023-3028
Venturi, C., Zoppini, G., Zamboni, C., Muggeo, M., Insulin sensitivity and hepatic steatosis in obese subjects with normal glucose tolerance (2004) Nutr Metab Cardiovasc Dis, 14, pp. 200-204
Silverman, J.F., O'Brien, K.F., Long, S., Leggett, N., Khazanie, P.G., Pories, W.J., Liver pathology in morbidly obese patients with and without diabetes (1990) Am J Gastroenterol, 85, pp. 1349-1355
Kelley, D.E., McKolanis, T.M., Hegazi, R.A., Kuller, L.H., Kalhan, S.C., Fatty liver in type 2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance (2003) Am J Physiol Endocrinol Metab, 285, pp. E906-E916
Kotronen, A., Juurinen, L., Hakkarainen, A., Westerbacka, J., Corner, A., Bergholm, R., Liver fat is increased in type 2 diabetic patients and underestimated by serum alanine aminotransferase compared with equally obese nondiabetic subjects (2008) Diabetes Care, 31, pp. 165-169
Gallagher, D., Kelley, D.E., Yim, J.E., Spence, N., Albu, J., Boxt, L., Adipose tissue distribution is different in type 2 diabetes (2009) Am J Clin Nutr, 89, pp. 807-814
Longo, R., Pollesello, P., Ricci, C., Masutti, F., Kvam, B.J., Bercich, L., Proton MR spectroscopy in quantitative in vivo determination of fat content in human liver steatosis (1995) J Magn Reson Imaging, 5, pp. 281-285
Longo, R., Ricci, C., Masutti, F., Vidimari, R., Croce, L.S., Bercich, L., Fatty infiltration of the liver. Quantification by 1H localized magnetic resonance spectroscopy and comparison with computed tomography (1993) Invest Radiol, 28, pp. 297-302
Ryysy, L., Hakkinen, A.M., Goto, T., Vehkavaara, S., Westerbacka, J., Halavaara, J., Hepatic fat content and insulin action on free fatty acids and glucose metabolism rather than insulin absorption are associated with insulin requirements during insulin therapy in type 2 diabetic patients (2000) Diabetes, 49, pp. 749-758
DeFronzo, R.A., Tobin, J.D., Andres, R., Glucose clamp technique: a method for quantifying insulin secretion and resistance (1979) Am J Physiol, 237, pp. E214-E223
Palmeira, C.M., Rolo, A.P., Berthiaume, J., Bjork, J.A., Wallace, K.B., Hyperglycemia decreases mitochondrial function: the regulatory role of mitochondrial biogenesis (2007) Toxicol Appl Pharmacol, 225, pp. 214-220
Caldwell, S.H., Swerdlow, R.H., Khan, E.M., Iezzoni, J.C., Hespenheide, E.E., Parks, J.K., Mitochondrial abnormalities in non-alcoholic steatohepatitis (1999) J Hepatol, 31, pp. 430-434
Demeilliers, C., Maisonneuve, C., Grodet, A., Mansouri, A., Nguyen, R., Tinel, M., Impaired adaptive resynthesis and prolonged depletion of hepatic mitochondrial DNA after repeated alcohol binges in mice (2002) Gastroenterology, 123, pp. 1278-1290
Bugianesi, E., Gastaldelli, A., Vanni, E., Gambino, R., Cassader, M., Baldi, S., Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms (2005) Diabetologia, 48, pp. 634-642
Korenblat, K.M., Fabbrini, E., Mohammed, B.S., Klein, S., Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects (2008) Gastroenterology, 134, pp. 1369-1375
Kotronen, A., Westerbacka, J., Bergholm, R., Pietilainen, K.H., Yki-Jarvinen, H., Liver fat in the metabolic syndrome (2007) J Clin Endocrinol Metab, 92, pp. 3490-3497
Tushuizen, M.E., Bunck, M.C., Pouwels, P.J., Bontemps, S., Mari, A., Diamant, M., Lack of association of liver fat with model parameters of beta-cell function in men with impaired glucose tolerance and type 2 diabetes (2008) Eur J Endocrinol, 159, pp. 251-257
Weyer, C., Foley, J.E., Bogardus, C., Tataranni, P.A., Pratley, R.E., Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance (2000) Diabetologia, 43, pp. 1498-1506
Dubois, S.G., Heilbronn, L.K., Smith, S.R., Albu, J.B., Kelley, D.E., Ravussin, E., Decreased expression of adipogenic genes in obese subjects with type 2 diabetes (2006) Obesity (Silver Spring), 14, pp. 1543-1552
Kim, J.Y., Van De Wall, E., Laplante, M., Azzara, A., Trujillo, M.E., Hofmann, S.M., Obesity-associated improvements in metabolic profile through expansion of adipose tissue (2007) J Clin Invest, 117, pp. 2621-2637
Luyckx, F. H., Desaive, C., Thiry, A., Dewe, W., Scheen, A. J., Gielen, J. E., Liver abnormalities in severely obese subjects: effect of drastic weight loss after gastroplasty (1998) Int J Obes Relat Metab Disord, 22, pp. 222-226
Silverman, J. F., O'Brien, K. F., Long, S., Leggett, N., Khazanie, P. G., Pories, W. J., Liver pathology in morbidly obese patients with and without diabetes (1990) Am J Gastroenterol, 85, pp. 1349-1355
Kelley, D. E., McKolanis, T. M., Hegazi, R. A., Kuller, L. H., Kalhan, S. C., Fatty liver in type 2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance (2003) Am J Physiol Endocrinol Metab, 285, pp. E906-E916
DeFronzo, R. A., Tobin, J. D., Andres, R., Glucose clamp technique: a method for quantifying insulin secretion and resistance (1979) Am J Physiol, 237, pp. E214-E223
Palmeira, C. M., Rolo, A. P., Berthiaume, J., Bjork, J. A., Wallace, K. B., Hyperglycemia decreases mitochondrial function: the regulatory role of mitochondrial biogenesis (2007) Toxicol Appl Pharmacol, 225, pp. 214-220
Caldwell, S. H., Swerdlow, R. H., Khan, E. M., Iezzoni, J. C., Hespenheide, E. E., Parks, J. K., Mitochondrial abnormalities in non-alcoholic steatohepatitis (1999) J Hepatol, 31, pp. 430-434
Korenblat, K. M., Fabbrini, E., Mohammed, B. S., Klein, S., Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects (2008) Gastroenterology, 134, pp. 1369-1375
Tushuizen, M. E., Bunck, M. C., Pouwels, P. J., Bontemps, S., Mari, A., Diamant, M., Lack of association of liver fat with model parameters of beta-cell function in men with impaired glucose tolerance and type 2 diabetes (2008) Eur J Endocrinol, 159, pp. 251-257
Dubois, S. G., Heilbronn, L. K., Smith, S. R., Albu, J. B., Kelley, D. E., Ravussin, E., Decreased expression of adipogenic genes in obese subjects with type 2 diabetes (2006) Obesity (Silver Spring), 14, pp. 1543-1552
Kim, J. Y., Van De Wall, E., Laplante, M., Azzara, A., Trujillo, M. E., Hofmann, S. M., Obesity-associated improvements in metabolic profile through expansion of adipose tissue (2007) J Clin Invest, 117, pp. 2621-2637
Liver fat in obesity: role of type 2 diabetes mellitus and adipose tissue distribution
BACKGROUND: Fatty liver is commonly associated with insulin-resistant conditions, often related to increased abdominal visceral fat. Our objective was to elucidate the specific roles of obesity, type 2 diabetes mellitus, insulin-resistance and abdominal fat distribution.; MATERIALS AND METHODS: The study population comprised 13 diabetic obese (DO), 10 nondiabetic obese (NDO), and nine normal-weight control (C) men aged 28-65years, with normal plasma triglyceride levels. DO were in good glycaemic control (HbA1c = 6·8 ± 0·8%) (M ± SD) with diet (n = 8) or diet + metformin (n = 5). Liver fat content was measured by (1) H-magnetic resonance spectroscopy, abdominal fat distribution by magnetic resonance imaging and insulin sensitivity by hyperinsulinaemic euglycaemic clamp.; RESULTS: DO and NDO subjects had similar whole-body insulin resistance, BMI and waist circumference, higher than those of C subjects (P < 0·001). DO had more liver fat (11·9 ± 7·0%) than NDO (5·2 ± 2·8%, P < 0·05) and C (1·6 ± 1·0%, P < 0·001). Abdominal fat was greater in DO and NDO than in C (visceral: DO 3184 ± 843, NDO 2843 ± 1378 vs. C 1212 ± 587 cm(3), P < 0·001; subcutaneous: DO 4029 ± 362, NDO 5197 ± 1398 vs. C 2312 ± 626 cm(3), P < 0·001), visceral fat being not significantly different between the two obese groups, and subcutaneous fat significantly less in DO than in NDO (P < 0·05).; CONCLUSIONS: Type 2 diabetes is associated with increased fat accumulation in the liver, independent of obesity and whole-body insulin resistance. The increased liver fat in DO patients may be part of an altered regional fat distribution that includes an inadequate subcutaneous fat storing capacity, rather than simply being a consequence of increased abdominal visceral content. 2010 The Authors. European Journal of Clinical Investigation 2010 Stichting European Society for Clinical Investigation Journal Foundation.
Liver fat in obesity: role of type 2 diabetes mellitus and adipose tissue distribution
No results.
Liver fat in obesity: role of type 2 diabetes mellitus and adipose tissue distribution
Testino G, Leone S, Fagoonee S, Del Bas JM, Rodriguez B, Puiggros F, Marine S, Rodriguez MA, Morina D, Armengol L, Caimari A, Arola L, Cimini FA, Barchetta I, Carotti S, Bertoccini L, Baroni MG, Vespasiani-gentilucci U, Cavallo MG, Morini S, Nelson JE, Roth CL, Wilson LA, Yates KP, Aouizerat B, Morgan-stevenson V, Whalen E, Hoofnagle A, Mason M, Gersuk V, Yeh MM, Kowdley KV, Lee SM, Jun DW, Cho YK, Jang KS, Kucukazman M, Ata N, Dal K, Yeniova AO, Kefeli A, Basyigit S, Aktas B, Akin KO, Agladioglu K, Ure OS, Topal F, Nazligul Y, Beyan E, Ertugrul DT, Catena C, Cosma C, Camozzi V, Plebani M, Ermani M, Sechi LA, Fallo F, Goto Y, Ray MB, Mendenhall CL, French SW, Gartside PS Serum vitamin A deficiency and increased intrahepatic expression of cytokeratin antigen in alcoholic liver disease(595 views) Hepatology (ISSN: 1827-1669electronic, 0026-4806linking), 1988 Sep; 83120693611123109(5): 1019-1026. Impact Factor:0.913 ViewExport to BibTeXExport to EndNote
74 Records (72 excluding Abstracts). Total impact factor: 255.632 (249.448 excluding Abstracts). Total 5 year impact factor: 257.392 (251.012 excluding Abstracts).