Istituto di Biostrutture e Bioimmagini (IBB), CNR, Catania, Italy
Consorzio Catania Ricerche, Italy
Dipartimento di Scienze Chimiche, Università di Catania, Italy
Dipartimento di Chimica Fisica, Università di Palermo, Italy
References: Bloemendal, H., (1981) Molecular and Cellular Biology of the Eye Lens, , Wiley, N
Horwitz, J., Alpha-crystallin can function as a molecular chaperone (1992) Proc. Natl. Acad. Sci. USA, 89, pp. 10449-10453
Doss-Pepe, E.W., Carew, E.L., Koretz, J.F., Studies of the denaturation patterns of bovine alpha-crystallin using an ionic denaturant, guanidine hydrochloride and a non-ionic denaturant, urea (1998) Exp. Eye Res., 67, pp. 657-679
Spector, A., Li, L.K., Augusteyn, R.C., Schneider, A., Freund, T., Crystallin. The isolation and characterization of distinct macromolecular fractions (1971) Biochem. J., 124, pp. 337-343
Liang, J.J.-N., Akhtar, N.J., Human lens high-molecular-weight (α-crystallin aggregates (2000) Biochem. Biophys. Res. Commun., 275, pp. 354-359
Fujii, N., Awakura, M., Takemoto, L., Inomata, M., Tarata, T., Fujii, N., Saito, T., Characterization of αA-crystallin from high molecular weight aggregates in the normal human lens (2003) Mol. Vis., 9, pp. 315-322
Bindels, J., Siezen, R.J., Hoenders, H.J., The quaternary structure of bovine α-crystallin: effects of variations in alkaline pH, ionic strength, temperature and calcium ion concentration (1980) Eur. J. Biochem., 111, pp. 435-444
Thomson, J.A., Augusteyn, R.C., Alpha m-crystallin the native form of the protein? (1983) Exp. Eye Res., 37, pp. 367-377
Das, B.K., Liang, J.J.N., Chakrabarti, B., Heat-induced conformational change and increased chaperone activity of lens α-crystallin (1997) Curr. Eye Res., 16, pp. 303-309
Burgio, M.R., Carin, J.K., Dow, C.C., Koretz, J.F., Correlation between the chaperone-like activity and aggregate size of α-crystallin with increasing temperature (2000) Biochem. Biophys. Res. Commun., 268, pp. 426-432
Clauwaert, J., Ellerton, H.D., Koretz, J., Thomson, K., Augusteyn, R.C., The effect of temperature on the renaturation of α-crystallin (1989) Curr. Eye Res., 8, pp. 397-403
Takemoto, L., Boyle, D., The possible role of α-crystallins in human senile cararactogenesis (1998) Int. J. Biol. Macromol., 22, pp. 331-337
Meehan, S., Berry, Y., Luisi, B., Dobson, C.M., Carver, J.A., MacPhee, C.E., Amyloid fibril formation by lens crystalline proteins and its implications for cataract formation (2004) J. Biol. Chem., 279, pp. 3413-3419
Harding, J.J., Cataract, Alzheimer's disease, and other conformational diseases (1998) Curr. Opin. Ophthalmol., 9, pp. 10-13
Heon, E., Priston, M., Schorderet, D.F., Billingsley, G.D., Girard, P.O., Lubsen, N., Munier, F.L., The gamma-crystallins and human cataracts: a puzzle made clearer (1999) Am. J. Hum. Genet., 65, pp. 1261-1267
Tanaka, M., Machida, Y., Niu, S., Ikeda, T., Jana, N.R., Doi, H., Kurosawa, M., Nukina, N., Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease (2004) Nat. Med., 10, pp. 148-154
Arora, A., Ha, C., Park, C.B., Inhibition of insulin amyloid formation by small stress molecules (2004) FEBS Lett., 564, pp. 121-125
Akashi, K., Miyake, C., Yokota, A., Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger (2001) FEBS Lett., 508, pp. 438-442
Yan, H., Harding, J.J., Carnosine inhibits modifications and decreased molecular chaperone activity of lens alpha-crystallin induced by ribose and fructose 6-phosphate (2006) Mol. Vis., 12, pp. 205-214
Arguelles, J.C., Physiological roles of trehalose in bacteria and yeasts: a comparative analysis (2000) Arch. Microbiol., 174, pp. 217-224
Benaroudj, N., Lee, D.H., Goldberg, A.L., Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals (2001) J. Biol. Chem., 276, pp. 24261-24267
Ganea, E., Harding, J.J., Trehalose and 6-aminohexanoic acid stabilize and renature glucose-6-phosphate dehydrogenase inactivated by glycation and by guanidinium hydrochloride (2005) J. Biol. Chem., 386, pp. 269-278
Liu, R., Barkhordarian, H., Emadi, S., Park, C.B., R Sierks, M., Trehalose differentially inhibits aggregation and neurotoxicity of beta-amyloid 40 and 42 (2005) Neurobiol. Dis., 20, pp. 74-81
Davies, J.E., Sovan, S., Rubinsztein, D.C., Trehalose reduces aggregate formation and delays pathology in a transgenic mouse model of oculopharyngeal muscular dystrophy (2006) Hum. Mol. Genet., 15, pp. 23-31
Sharp, L.K., Mallya, M., Kinghorn, K.J., Wang, Z., Crowther, D.C., Huntington, J.A., Belorgey, D., Lomas, D.A., Sugar and alcohol molecules provide a therapeutic strategy for the serpinopathies that cause dementia and cirrhosis (2006) FEBS J., 273, pp. 2540-2552
Naiki, H., Higuchi, K., Hosokawa, M., Takeda, T., Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavine T (1989) Anal. Biochem., 177, pp. 244-249
LeVine III, H., Quantification of beta-sheet amyloid fibril structures with thioflavin T (1999) Methods Enzymol., 309, pp. 274-284
Pignataro, B., Chi, L.F., Gao, S., Anczykowski, B., Niemeyer, C.M., Adler, M., Blohm, D., Fuchs, H., Dynamic scanning force microscopy study of self-assembled DNA-protein oligomers (2002) Appl. Phys. A, 74, pp. 447-452
McFall-Ngai, M.J., Ding, L.L., Takemoto, L.J., Horwitz, J., Spatial and temporal mapping of the age-related changes in human lens crystallins (1985) Exp. Eye Res., 41, pp. 745-758
Spector, A., The search for a solution to senile cataracts (1984) Invest. Ophthalmol. Visual Sci., 25, pp. 130-146
Chiou, S.H., Azari, P.J., Physicochemical characterization of alpha-crystallins from bovine lenses: hydrodynamic and conformational properties (1989) Protein Chem., 8, pp. 1-17
Lee, J.S., Satoh, H.S., Samejima, T., Wu, S.H., Chiou, S.H., Effect of heat induced structural perturbation of secondary and tertiary structures on the chaperone activity of α-crystallin (1997) Biochem. Biophys. Res. Commun., 237, pp. 277-282
Liang, J.J.N., Sun, T.X., Akhtar, N.J., Heat-induced conformational change of human lens recombinant αA- and αB-crystallins (2000) Mol. Vis., 6, pp. 10-14
Beattie, G.M., Crowe, J.H., Lopez, A.D., Cirulli, V., Ricordi, C., Hayek, A., Trehalose: a cryoprotectant that enhances recovery and preserves function of human pancreatic islets after long-term storage (1997) Diabetes, 46, pp. 519-523
Beattie, G.M., Leibowitz, G., Lopez, A.D., Levine, F., Hayek, A., Protection from cell death in cultured human fetal pancreatic cells (2000) Cell Transplant., 9, pp. 431-438
Guo, N., Puhlev, I., Brown, D.R., Mansbridge, J., Levine, F., Trehalose expression confers desiccation tolerance on human cells (2000) Nat. Biotechnol., 18, pp. 168-171
Puhlev, I., Guo, N., Brown, D.R., Levine, F., Desiccation tolerance in human cells (2001) Cryobiology, 42, pp. 207-217
Mussauer, H., Sukhorukov, V.L., Zimmermann, U., Trehalose improves survival of electrotransfected mammalian cells (2001) Cytometry, 45, pp. 161-169
Reuss, R., Ludwig, J., Shirakashi, R., Ehrhart, F., Zimmermann, H., Schneider, S., Weber, M.M., Sukhorukov, V.L., Intracellular delivery of carbohydrates into mammalian cells through swelling-activated pathways (2004) J. Membr. Biol., 200, pp. 67-81
Wolkers, WF., Walker, N.J., Tablin, F., Crowe, J.H., Human platelets loaded with trehalose survive freeze-drying (2001) Cryobiology, 42, pp. 79-87
Wolkers, WF., Tablin, F., Crowe, J.H., From anhydrobiosis to freeze-drying of eukaryotic cells (2002) Physiol. A, 131, pp. 535-543
Nie, Y., de Pablo, J.J., Palecek, S.P., Platelet cryopreservation using a trehalose and phosphate formulation (2005) Biotechnol. Bioeng., 92, pp. 79-90
Erdag, G., Eroglu, A., Morgan, J.R., Toner, M., Cryopreservation of fetal skin is improved by extracellular trehalose (2002) Cryobiology, 44, pp. 218-228
Ji, L., de Pablo, J.J., Palecek, S.P., Cryopreservation of adherent human embryonic stem cells (2004) Biotechnol. Bioeng., 88, pp. 299-312
Satpathy, G.R., Torok, Z., Bali, R., Dwyre, D.M., Little, E., Wolkers, WF., Tablin, F., Tsvetkova, N.M., Loading red blood cells with trehalose: a step towards biostabilization (2004) Cryobiology, 49, pp. 123-136
Matsuo, T., Trehalose versus hyaluronan or cellulose in eyedrops for the treatment of dry eye (2004) Jpn. J. Ophthalmol., 48, pp. 321-327
Matsuo, T., Tsuchida, Y., Morimoto, N., Trehalose eye drops in the treatment of dry eye syndrome (2002) Ophthalmology, 109, pp. 2024-2029
Steadman, B.L., Trautman, P.A., Lawson, E.Q., Raymond, M.J., Mood, D.A., Thomson, J.A., Middaugh, C.R., A differential scanning calorimetric study of the bovine lens crystallins (1989) Biochemistry, 28, pp. 9653-9658
Walsh, M.T., Sen, A.C., Chakrabarti, B., Micellar subunit assembly in a three-layer model of oligomeric alpha-crystallin (1991) J. Biol. Chem., 266, pp. 20079-20084
Surewicz, W.K., Olesen, P.R., On the thermal stability of alpha-crystallin: a new insight from infrared spectroscopy (1995) Biochemistry, 34, pp. 9655-9660
Gesierich, U., Pfeil, W., The conformational stability of alpha-crystallin is rather low: calorimetric results (1996) FEBS Lett., 393, pp. 151-154
Arakawa, T., Timasheff, S.N., Stabilization of protein structure by sugars (1982) Biochemistry, 21, pp. 6536-6544
Xie, G., Timasheff, S.N., The thermodynamic mechanism of protein stabilization by trehalose (1997) Biophys. Chem., 64, pp. 25-43
Timasheff, S.N., Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components (2002) Proc. Natl. Acad. Sci., 99, pp. 9721-9726
Kaushik, J.K., Bhat, R., Why is trehalose an exceptional protein stabilizer? An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose (2003) J. Biol. Chem., 278, pp. 26458-26465
Lins, R.D., Pereira, C.S., Hünenberger, P.H., Trehalose-protein interaction in aqueous solution (2004) Proteins, 55, pp. 177-186
Cesaro, A., Magazù, V., Migliardo, F., Sussich, F., Vadalà, M., (2004) Physica B: Condensed Matter, 350 (1-3 SUPPL.1), pp. e367-e370
Hédoux, A., Willart, J.F., Ionov, R., Affouard, F., Guinet, Y., Paccou, L., Lerbret, A., Descamps, M.J., Analysis of sugar bioprotective mechanisms on the thermal denaturation of lysozyme from Raman scattering and differential scanning calorimetry investigations (2006) Phys. Chem. B, 110, pp. 22886-22893
Magazù, S., Migliardo, F., Ramirez-Cuesta, A.J., Study on physical mechanisms of bioprotection (2006) Int. J. Phys. Sci., 1, pp. 75-80
Choi, Y., Cho, K.W., Jeong, K., Jung, S., Molecular dynamics simulations of trehalose as a 'dynamic reducer' for solvent water molecules in the hydration shell (2006) Carbohydr. Res., 341, pp. 1020-1028
Doss-Pepe, E. W., Carew, E. L., Koretz, J. F., Studies of the denaturation patterns of bovine alpha-crystallin using an ionic denaturant, guanidine hydrochloride and a non-ionic denaturant, urea (1998) Exp. Eye Res., 67, pp. 657-679
Liang, J. J. -N., Akhtar, N. J., Human lens high-molecular-weight (-crystallin aggregates (2000) Biochem. Biophys. Res. Commun., 275, pp. 354-359
Thomson, J. A., Augusteyn, R. C., Alpha m-crystallin the native form of the protein? (1983) Exp. Eye Res., 37, pp. 367-377
Das, B. K., Liang, J. J. N., Chakrabarti, B., Heat-induced conformational change and increased chaperone activity of lens -crystallin (1997) Curr. Eye Res., 16, pp. 303-309
Burgio, M. R., Carin, J. K., Dow, C. C., Koretz, J. F., Correlation between the chaperone-like activity and aggregate size of -crystallin with increasing temperature (2000) Biochem. Biophys. Res. Commun., 268, pp. 426-432
Harding, J. J., Cataract, Alzheimer's disease, and other conformational diseases (1998) Curr. Opin. Ophthalmol., 9, pp. 10-13
Arguelles, J. C., Physiological roles of trehalose in bacteria and yeasts: a comparative analysis (2000) Arch. Microbiol., 174, pp. 217-224
Davies, J. E., Sovan, S., Rubinsztein, D. C., Trehalose reduces aggregate formation and delays pathology in a transgenic mouse model of oculopharyngeal muscular dystrophy (2006) Hum. Mol. Genet., 15, pp. 23-31
Sharp, L. K., Mallya, M., Kinghorn, K. J., Wang, Z., Crowther, D. C., Huntington, J. A., Belorgey, D., Lomas, D. A., Sugar and alcohol molecules provide a therapeutic strategy for the serpinopathies that cause dementia and cirrhosis (2006) FEBS J., 273, pp. 2540-2552
Garcia, V. J., Martinez, L., Brice o-Valero, J. M., Shilling, C. M., (1997) Probe Microsc., 1, pp. 107-116
McFall-Ngai, M. J., Ding, L. L., Takemoto, L. J., Horwitz, J., Spatial and temporal mapping of the age-related changes in human lens crystallins (1985) Exp. Eye Res., 41, pp. 745-758
Chiou, S. H., Azari, P. J., Physicochemical characterization of alpha-crystallins from bovine lenses: hydrodynamic and conformational properties (1989) Protein Chem., 8, pp. 1-17
Lee, J. S., Satoh, H. S., Samejima, T., Wu, S. H., Chiou, S. H., Effect of heat induced structural perturbation of secondary and tertiary structures on the chaperone activity of -crystallin (1997) Biochem. Biophys. Res. Commun., 237, pp. 277-282
Liang, J. J. N., Sun, T. X., Akhtar, N. J., Heat-induced conformational change of human lens recombinant A- and B-crystallins (2000) Mol. Vis., 6, pp. 10-14
Beattie, G. M., Crowe, J. H., Lopez, A. D., Cirulli, V., Ricordi, C., Hayek, A., Trehalose: a cryoprotectant that enhances recovery and preserves function of human pancreatic islets after long-term storage (1997) Diabetes, 46, pp. 519-523
Beattie, G. M., Leibowitz, G., Lopez, A. D., Levine, F., Hayek, A., Protection from cell death in cultured human fetal pancreatic cells (2000) Cell Transplant., 9, pp. 431-438
Satpathy, G. R., Torok, Z., Bali, R., Dwyre, D. M., Little, E., Wolkers, WF., Tablin, F., Tsvetkova, N. M., Loading red blood cells with trehalose: a step towards biostabilization (2004) Cryobiology, 49, pp. 123-136
Steadman, B. L., Trautman, P. A., Lawson, E. Q., Raymond, M. J., Mood, D. A., Thomson, J. A., Middaugh, C. R., A differential scanning calorimetric study of the bovine lens crystallins (1989) Biochemistry, 28, pp. 9653-9658
Walsh, M. T., Sen, A. C., Chakrabarti, B., Micellar subunit assembly in a three-layer model of oligomeric alpha-crystallin (1991) J. Biol. Chem., 266, pp. 20079-20084
Surewicz, W. K., Olesen, P. R., On the thermal stability of alpha-crystallin: a new insight from infrared spectroscopy (1995) Biochemistry, 34, pp. 9655-9660
Timasheff, S. N., Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components (2002) Proc. Natl. Acad. Sci., 99, pp. 9721-9726
Kaushik, J. K., Bhat, R., Why is trehalose an exceptional protein stabilizer? An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose (2003) J. Biol. Chem., 278, pp. 26458-26465
Lins, R. D., Pereira, C. S., H nenberger, P. H., Trehalose-protein interaction in aqueous solution (2004) Proteins, 55, pp. 177-186
Cesaro, A., Magaz, V., Migliardo, F., Sussich, F., Vadal, M., (2004) Physica B: Condensed Matter, 350 (1-3 SUPPL. 1), pp. e367-e370
H doux, A., Willart, J. F., Ionov, R., Affouard, F., Guinet, Y., Paccou, L., Lerbret, A., Descamps, M. J., Analysis of sugar bioprotective mechanisms on the thermal denaturation of lysozyme from Raman scattering and differential scanning calorimetry investigations (2006) Phys. Chem. B, 110, pp. 22886-22893
Magaz, S., Migliardo, F., Ramirez-Cuesta, A. J., Study on physical mechanisms of bioprotection (2006) Int. J. Phys. Sci., 1, pp. 75-80
Choi, Y., Cho, K. W., Jeong, K., Jung, S., Molecular dynamics simulations of trehalose as a 'dynamic reducer' for solvent water molecules in the hydration shell (2006) Carbohydr. Res., 341, pp. 1020-1028
Trehalose effects on alpha-crystallin aggregates
alpha-Crystallin in its native state is a large, heterogeneous, low-molecular weight (LMW) aggregate that under certain conditions may progressively became part of insoluble high-molecular weight (HMW) systems. These systems are supposed to play a relevant role in eye lens opacification and vision impairment. In this paper, we report the effects of trehalose on alpha-crystallin aggregates. The role of trehalose in alpha-crystallin stress tolerance, chaperone activity and thermal stability is studied. The results show that trehalose stabilizes the alpha-crystallin native structure, inhibits alpha-crystallin aggregation, and disaggregates preformed LMW systems not affecting its chaperone activity. (c) 2007 Elsevier Inc. All rights reserved