Cancer-selective targeting of the NF-kappaB survival pathway with GADD45beta/MKK7 inhibitors(623 views) Tornatore L, Sandomenico A, Raimondo D, Low C, Rocci A, Tralau-Stewart C, Capece D, D'Andrea D, Bua M, Boyle E, van Duin M, Zoppoli P, Jaxa-Chamiec A, Thotakura AK, Dyson J, Walker BA, Leonardi A, Chambery A, Driessen C, Sonneveld P, Morgan G, Palumbo A, Tramontano A, Rahemtulla A, Ruvo M, Franzoso G
Cancer Cell (ISSN: 1535-6108), 2014 Oct 13; 26(4): 495-508.
Keywords: Antineoplastic Agent, Bortezomib, D Tripeptide Dtp3, Growth Arrest And Dna Damage Inducible Protein 45 Beta Inhibitor, Immunoglobulin Enhancer Binding Protein, Jnk Kinase Mkk7, Jnk Kinase Mkk7 Inhibitor, Protein Inhibitor, Stress Activated Protein Kinase Inhibitor, Tripeptide Derivative, Unclassified Drug, Cell Cycle Protein, Gadd45a Protein, Human, Map2k7 Protein, Mitogen Activated Protein Kinase Kinase 7, Nuclear Protein, Animal Experiment, Animal Model, Antineoplastic Activity, Cancer Cell, Controlled Study, Human Cell, In Vitro Study, Mouse, Multiple Myeloma, Nonhuman, Protein Expression, Protein Protein Interaction, Signal Transduction, Survival Factor, Tumor Xenograft, Antagonists And Inhibitors, Bioavailability, Metabolism, Pathology, Biological Availability, Map Kinase Kinase 7, Nf-Kappa B, Antineoplastic Agents Pharmacokinetics Pharmacology, Cell Cycle Proteins Antagonists, Map Kinase Kinase 7 Antagonists, Multiple Myeloma Metabolism Pathology, Nf-Kappa B Metabolism, Nuclear Proteins Antagonists,
Affiliations: *** IBB - CNR ***
Department of Medicine, Centre for Cell Signalling and Inflammation, Imperial College LondonLondon, United Kingdom
Institute of Biostructures and Bioimages, National Research Council and CIRPeBNaples, Italy
Department of Physics, Sapienza UniversityRome, Italy
Drug Discovery Centre, Imperial College LondonLondon, United Kingdom
Division of Hematology, University of Torino, AOU San Giovanni BattistaTurin, Italy
Section of Haemato-Oncology, The Institute of Cancer ResearchLondon, United Kingdom
Department of Hematology, Erasmus University Medical CenterCA Rotterdam, Netherlands
Institute for Cancer Genetics, Columbia University Medical CenterNew York, NY, United States
Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico IINaples, Italy
Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, Second University of NaplesCaserta, Italy
IRCCS MultimedicaMilan, Italy
Department of Oncology/Hematology, Kantonsspital St. GallenSt. Gallen, Switzerland
Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza UniversityRome, Italy
IRCCS Multimedica, 20138 Milan, Italy.
References: Annunziata, C.M., Davis, R.E., Demchenko, Y., Bellamy, W., Gabrea, A., Zhan, F., Lenz, G., Xiao, W., Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma (2007) Cancer Cell, 12, pp. 115-13
Bjorklund, C.C., Ma, W., Wang, Z.Q., Davis, R.E., Kuhn, D.J., Kornblau, S.M., Wang, M., Orlowski, R.Z., Evidence of a role for activation of Wnt/beta-catenin signaling in the resistance of plasma cells to lenalidomide (2011) J.Biol. Chem., 286, pp. 11009-11020
Bjorklund, C.C., Baladandayuthapani, V., Lin, H.Y., Jones, R.J., Kuiatse, I., Wang, H., Yang, J., Wang, M., Evidence of a role for CD44 and cell adhesion in mediating resistance to lenalidomide in multiple myeloma: therapeutic implications (2014) Leukemia, 28, pp. 373-383
Broyl, A., Hose, D., Lokhorst, H., de Knegt, Y., Peeters, J., Jauch, A., Bertsch, U., Beverloo, H.B., Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients (2010) Blood, 116, pp. 2543-2553
Chapman, M.A., Lawrence, M.S., Keats, J.J., Cibulskis, K., Sougnez, C., Schinzel, A.C., Harview, C.L., Adli, M., Initial genome sequencing and analysis of multiple myeloma (2011) Nature, 471, pp. 467-472
Chen, D., Frezza, M., Schmitt, S., Kanwar, J., Dou, Q.P., Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives (2011) Curr. Cancer Drug Targets, 11, pp. 239-253
Chi, H., Lu, B., Takekawa, M., Davis, R.J., Flavell, R.A., GADD45β/GADD45γ and MEKK4 comprise a genetic pathway mediating STAT4-independent IFNγ production in Tcells (2004) EMBO J., 23, pp. 1576-1586
Chou, T.C., Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies (2006) Pharmacol. Rev., 58, pp. 621-681
Davies, C., Tournier, C., Exploring the function of the JNK (c-Jun N-terminal kinase) signalling pathway in physiological and pathological processes to design novel therapeutic strategies (2012) Biochem. Soc. Trans., 40, pp. 85-89
Demchenko, Y.N., Glebov, O.K., Zingone, A., Keats, J.J., Bergsagel, P.L., Kuehl, W.M., Classical and/or alternative NF-kappaB pathway activation in multiple myeloma (2010) Blood, 115, pp. 3541-3552
De Smaele, E., Zazzeroni, F., Papa, S., Nguyen, D.U., Jin, R., Jones, J., Cong, R., Franzoso, G., Induction of gadd45β by NF-kappaB downregulates pro-apoptotic JNK signalling (2001) Nature, 414, pp. 308-313
Dickens, N.J., Walker, B.A., Leone, P.E., Johnson, D.C., Brito, J.L., Zeisig, A., Jenner, M.W., Gregory, W.M., Homozygous deletion mapping in myeloma samples identifies genes and an expression signature relevant to pathogenesis and outcome (2010) Clin. Cancer Res., 16, pp. 1856-1864
DiDonato, J.A., Mercurio, F., Karin, M., NF-κB and the link between inflammation and cancer (2012) Immunol. Rev., 246, pp. 379-400
Gomez-Bougie, P., Amiot, M., Apoptotic machinery diversity in multiple myeloma molecular subtypes (2013) Front. Immunol., 4, p. 467
Hideshima, T., Chauhan, D., Richardson, P., Anderson, K.C., Identification and validation of novel therapeutic targets for multiple myeloma (2005) J.Clin. Oncol., 23, pp. 6345-6350
Keats, J.J., Fonseca, R., Chesi, M., Schop, R., Baker, A., Chng, W.J., Van Wier, S., Sebag, M., Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma (2007) Cancer Cell, 12, pp. 131-144
Kuehl, W.M., Bergsagel, P.L., Multiple myeloma: evolving genetic events and host interactions (2002) Nat. Rev. Cancer, 2, pp. 175-187
Kyle, R.A., Rajkumar, S.V., Criteria for diagnosis, staging, risk stratification and response assessment of multiple myeloma (2009) Leukemia, 23, pp. 3-9
Lam, L.T., Davis, R.E., Pierce, J., Hepperle, M., Xu, Y., Hottelet, M., Nong, Y., Staudt, L.M., Small molecule inhibitors of IkappaB kinase are selectively toxic for subgroups of diffuse large B-cell lymphoma defined by gene expression profiling (2005) Clin. Cancer Res., 11, pp. 28-40
Lu, B., Ferrandino, A.F., Flavell, R.A., Gadd45β is important for perpetuating cognate and inflammatory signals in Tcells (2004) Nat. Immunol., 5, pp. 38-44
Mahindra, A., Laubach, J., Raje, N., Munshi, N., Richardson, P.G., Anderson, K., Latest advances and current challenges in the treatment of multiple myeloma (2012) Nat Rev Clin Oncol, 9, pp. 135-143
Mauro, C., Leow, S.C., Anso, E., Rocha, S., Thotakura, A.K., Tornatore, L., Moretti, M., Tergaonkar, V., NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration (2011) Nat. Cell Biol., 13, pp. 1272-1279
McCurdy, A.R., Lacy, M.Q., Pomalidomide and its clinical potential for relapsed or refractory multiple myeloma: an update for the hematologist (2013) Ther Adv Hematol, 4, pp. 211-216
Ngo, V.N., Davis, R.E., Lamy, L., Yu, X., Zhao, H., Lenz, G., Lam, L.T., Staudt, L.M., A loss-of-function RNA interference screen for molecular targets in cancer (2006) Nature, 441, pp. 106-110
Nickl, C.K., Raidas, S.K., Zhao, H., Sausbier, M., Ruth, P., Tegge, W., Brayden, J.E., Dostmann, W.R., (D)-Amino acid analogues of DT-2 as highly selective and superior inhibitors of cGMP-dependent protein kinase Ialpha (2010) Biochim. Biophys. Acta, 1804, pp. 524-532
Palumbo, A., Bringhen, S., Rossi, D., Cavalli, M., Larocca, A., Ria, R., Offidani, M., Guglielmelli, T., Bortezomib-melphalan-prednisone-thalidomide followed by maintenance with bortezomib-thalidomide compared with bortezomib-melphalan-prednisone for initial treatment of multiple myeloma: a randomized controlled trial (2010) J.Clin. Oncol., 28, pp. 5101-5109
Papa, S., Zazzeroni, F., Bubici, C., Jayawardena, S., Alvarez, K., Matsuda, S., Nguyen, D.U., Melis, T., Gadd45 β mediates the NF-κ B suppression of JNK signalling by targeting MKK7/JNKK2 (2004) Nat. Cell Biol., 6, pp. 146-153
Papa, S., Monti, S.M., Vitale, R.M., Bubici, C., Jayawardena, S., Alvarez, K., De Smaele, E., Franzoso, G., Insights into the structural basis of the GADD45β-mediated inactivation of the JNK kinase, MKK7/JNKK2 (2007) J.Biol. Chem., 282, pp. 19029-19041
Piva, R., Ruggeri, B., Williams, M., Costa, G., Tamagno, I., Ferrero, D., Giai, V., Massaia, M., CEP-18770: A novel, orally active proteasome inhibitor with a tumor-selective pharmacologic profile competitive with bortezomib (2008) Blood, 111, pp. 2765-2775
Rabin, N., Kyriakou, C., Coulton, L., Gallagher, O.M., Buckle, C., Benjamin, R., Singh, N., Nathwani, A.C., A new xenograft model of myeloma bone disease demonstrating the efficacy of human mesenchymal stem cells expressing osteoprotegerin by lentiviral gene transfer (2007) Leukemia, 21, pp. 2181-2191
Rajkumar, S.V., Treatment of multiple myeloma (2011) Nat. Rev. Clin. Oncol., 8, pp. 479-491
Richardson, P.G., Improving the therapeutic index in myeloma (2010) Blood, 116, pp. 4733-4734
Rückrich, T., Kraus, M., Gogel, J., Beck, A., Ovaa, H., Verdoes, M., Overkleeft, H.S., Driessen, C., Characterization of the ubiquitin-proteasome system in bortezomib-adapted cells (2009) Leukemia, 23, pp. 1098-1105
Sandomenico, A., Russo, A., Palmieri, G., Bergamo, P., Gogliettino, M., Falcigno, L., Ruvo, M., Small peptide inhibitors of acetyl-peptide hydrolase having an uncommon mechanism of inhibition and a stable bent conformation (2012) J.Med. Chem., 55, pp. 2102-2111
Staudt, L.M., Oncogenic activation of NF-kappaB (2010) Cold Spring Harb. Perspect. Biol., 2, p. a000109
Tang, G., Minemoto, Y., Dibling, B., Purcell, N.H., Li, Z., Karin, M., Lin, A., Inhibition of JNK activation through NF-kappaB target genes (2001) Nature, 414, pp. 313-317
Tornatore, L., Marasco, D., Dathan, N., Vitale, R.M., Benedetti, E., Papa, S., Franzoso, G., Monti, S.M., Gadd45 β forms a homodimeric complex that binds tightly to MKK7 (2008) J.Mol. Biol., 378, pp. 97-111
Tracey, L., Pérez-Rosado, A., Artiga, M.J., Camacho, F.I., Rodríguez, A., Martínez, N., Ruiz-Ballesteros, E., Cuadros, M., Expression of the NF-kappaB targets BCL2 and BIRC5/Survivin characterizes small B-cell and aggressive B-cell lymphomas, respectively (2005) J.Pathol., 206, pp. 123-134
Williamson, M.P., Using chemical shift perturbation to characterise ligand binding (2013) Prog. Nucl. Magn. Reson. Spectrosc., 73, pp. 1-16
Zhang, N., Ahsan, M.H., Zhu, L., Sambucetti, L.C., Purchio, A.F., West, D.B., NF-kappaB and not the MAPK signaling pathway regulates GADD45β expression during acute inflammation (2005) J.Biol. Chem., 280, pp. 21400-21408
Zhou, N., Luo, Z., Luo, J., Fan, X., Cayabyab, M., Hiraoka, M., Liu, D., Dong, C.Z., Exploring the stereochemistry of CXCR4-peptide recognition and inhibiting HIV-1 entry with D-peptides derived from chemokines (2002) J.Biol. Chem., 277, pp. 17476-17485
Cancer-selective targeting of the NF-kappaB survival pathway with GADD45beta/MKK7 inhibitors
Constitutive NF-kappaB signaling promotes survival in multiple myeloma (MM) and other cancers; however, current NF-kappaB-targeting strategies lack cancer cell specificity. Here, we identify the interaction between the NF-kappaB-regulated antiapoptotic factor GADD45beta and the JNK kinase MKK7 as a therapeutic target in MM. Using a drug-discovery strategy, we developed DTP3, a D-tripeptide, which disrupts the GADD45beta/MKK7 complex, kills MM cells effectively, and, importantly, lacks toxicity to normal cells. DTP3 has similar anticancer potency to the clinical standard, bortezomib, but more than 100-fold higher cancer cell specificity in vitro. Notably, DTP3 ablates myeloma xenografts in mice with no apparent side effects at the effective doses. Hence, cancer-selective targeting of the NF-kappaB pathway is possible and, at least for myeloma patients, promises a profound benefit.
Cancer-selective targeting of the NF-kappaB survival pathway with GADD45beta/MKK7 inhibitors
No results.
Cancer-selective targeting of the NF-kappaB survival pathway with GADD45beta/MKK7 inhibitors
Petraglia F, Singh AA, Carafa V, Nebbioso A, Conte M, Scisciola L, Valente S, Baldi A, Mandoli A, Petrizzi VB, Ingenito C, De Falco S, Cicatiello V, Apicella I, Janssen-megens EM, Kim B, Yi G, Logie C, Heath S, Ruvo M, Wierenga ATJ, Flicek P, Yaspo ML, Della Valle V, Bernard O, Tomassi S, Novellino E, Feoli A, Sbardella G, Gut I, Vellenga E, Stunnenberg HG, Mai A, Martens JHA, Altucci L * Combined HAT/EZH2 modulation leads to cancer-selective cell death(288 views) Oncotarget (ISSN: 1949-2553electronic, 1949-2553linking), 2018 May 22; 9(39): 25630-25646. Impact Factor:5.008 ViewExport to BibTeXExport to EndNote
Vitiello M, Finamore E, Falanga A, Raieta K, Cantisani M, Galdiero F, Pedone C, Galdiero M, Galdiero S * Fusion in Coq(481 views) Lecture Notes In Computer Science (ISSN: 0302-9743, 0302-974335404636319783540463634, 0302-974335402975459783540297543), 2001; 2178LNCS: 583-596. Impact Factor:0.415 ViewExport to BibTeXExport to EndNote