Keywords: Cell Surface Receptor, Echistatin, Integrin, N Ethyl N [4 (4 Piperidinyl)butyryl]glycylaspartyl 3 Cyclohexylalaninamide, Synthetic Peptide, Unclassified Drug, Vitronectin Receptor, Vitronectin Receptor Antagonist, Angiogenesis, Article, Cell Adhesion, Cell Strain K 562, Crystal Structure, Endothelium Cell, Erythroleukemia Cell, Melanoma Cell, Metastasis, Molecular Model, Nuclear Magnetic Resonance Spectroscopy, Peptide Synthesis, X Ray Diffraction, Crystallography, X-Ray, Drug Design, Humans, Integrin Alphavbeta3, K562 Cells, Molecular Mimicry, Molecular Structure, Oligopeptides, Radioligand Assay, N Ethyl N [4 (4 Piperidinyl) Butyryl] Glycylaspartyl 3 Cyclohexylalaninamide, Cell Adhesion Drug Effects, Integrin Alphavbeta3 Antagonists, Inhibitors Biosynthesis Chemistry, Integrins Biosynthesis, Oligopeptides Chemical Synthesis Chemistry Pharmacology, Vitronectin Biosynthesis, Vitronectin Physiology,
Affiliations: *** IBB - CNR ***
Institute of Biostructures and Bioimaging, Department of Biological Sciences, University of Naples Federico II, via Mezzocannone 16, 80134 Naples, Italy
Department of Pharmaceutical and Toxicological Chemistry, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
References: (1985) J. Biol. Chem., 260, pp. 14-4
Hynes, R.O., Integrins: Versatility, modulation, and signaling in cell adhesion (1992) Cell, 69, pp. 11-25
Serini, G., Valdembri, D., Bussolino, F., Integrins and angiogenesis: A sticky business (2005) Exp. Cell Res., 312, pp. 651-658
Ruoslahti, E., Pierschbacher, M.D., Arg-Gly-Asp: A versatile cell recognition signal (1986) Cell, 44, pp. 517-518
D'Souza, S.E., Ginsberg, M.H., Plow, E.F., Arginyl-glycyl-aspartic acid (RGD): A cell adhesion motif (1991) Trends Biochem. Sci., 16, pp. 246-250
Could, R.J., Polokoff, M.A., Friedman, P.A., Huang, T.F., Holt, J.C., Cook, J.J., Niewiarowski, S., Disintegrins: A family of integrin inhibitory proteins from viper venoms (1990) Proc. Soc. Exp. Biol. Med., 195, pp. 168-171
Marinelli, L., Gottschalk, K.E., Meyer, A., Novellino, E., Kessler, H., Human integrin αvβ5: Homology modeling and ligand binding (2004) J. Med. Chem., 47, pp. 4166-4177
Hood, J.D., Cheresh, D.A., Role of integrins in cell invasion and migration (2002) Nat. Rev. Cancer, 2, pp. 91-100
Eliceiri, B.P., Cheresh, D.A., The role of αv integrins during angiogenesis: Insights into potential mechanisms of action and clinical development (1999) J. Clin. Invest., 103, pp. 1227-1230
Kumar, C.C., Integrin αvβ5 as a therapeutic target for blocking tumor-induced angiogenesis (2003) Curr. Drug Targets, 4, pp. 123-131
Clezardin, P., Recent insights into the role of integrins in cancer metastasis (1998) Cell. Mol. Life Sci., 54, pp. 541-548
Friedlander, M., Brooks, P.C., Shaffer, R.W., Kincaid, C.M., Varner, J.A., Cheresh, D.A., Definition of two angiogenic pathways by distinct alpha v integrins (1995) Science, 270, pp. 1500-1502
Filardo, E.J., Brooks, P.C., Deming, S.L., Damsky, C., Cheresh, D.A., Requirement of the NPXY motif in the integrin beta 3 subunit cytoplasmic tail for melanoma cell migration in vitro and in vivo (1995) J. Cell Biol., 130, pp. 441-450
Brooks, P.C., Klemke, R.L., Schon, S., Lewis, J.M., Schwartz, M.A., Cheresh, D.A., Insulin-like growth factor receptor cooperates with integrin αvβ5 to promote tumor cell dissemination in vivo (1997) J. Clin. Invest., 99, pp. 1390-1398
Pasqualini, R., Bodorova, J., Hemler, M.E., A study of the structure, function and distribution of β5 integrins using novel anti-b5 monoclonal antibodies (1993) J. Cell Sci., 105, pp. 101-111
Walton, H.L., Corjay, M.H., Mohamed, S.N., Mousa, S.A., Santomenna, L.D., Reilly, T.M., Hypoxia induces differential expression of the integrin receptors αvβ3 and αvβ5 in cultured human endothelial cells (2000) J. Cell. Biochem., 78, pp. 674-680
Gutheil, J.C., Campbell, T.N., Pierce, P.R., Watkins, J.D., Huse, W.D., Bodkin, D.J., Cheresh, D.A., Targeted antiangiogenic therapy for cancer using vitaxin: A humanized monoclonal antibody to the integrin αvβ3 (2000) Clin. Cancer Res., 6, pp. 3056-3061
Miller, W.H., Keenan, R.M., Willette, R.N., Lark, M.W., Identification and in vivo efficacy of small-molecule antagonists of integrin αvβ3 (the vitronectin receptor) (2000) Drug Discover Todav, 5, pp. 397-408
Marugan, J.J., Manthey, C., Anaclerio, B., Lafrance, L., Lu, T., Markotan, T., Leonard, K.A., Tomczuk, B., Design, synthesis, and biological evaluation of novel potent and selective αvβ3/αvβ 5 integrin dual inhibitors with improved bioavailability. Selection of the molecular core (2005) J. Med. Chem., 48, pp. 926-934
Sulyok, G.A., Gibson, C., Goodman, S.L., Holzemann, G., Wiesner, M., Kessler, H., Solid-phase synthesis of a nonpeptide RGD mimetic library: New selective αvβ3 integrin antagonists (2001) J. Med. Chem., 44, pp. 1938-1950
Belvisi, L., Bernardi, A., Checchia, A., Manzoni, L., Potenza, D., Scolastico, C., Castorina, M., Pisano, C., Potent integrin antagonists from a small library of RGD-including cyclic pseudopeptides (2001) Org. Lett., 3, pp. 1001-1004
Mitjans, F., Meyer, T., Fittschen, C., Goodman, S., Jonczyk, A., Marshall, J.F., Reyes, G., Piulats, J., In vivo therapy of malignant melanoma by means of antagonists of ou integrins (2000) Int. J. Cancer, 87, pp. 716-723
Dechantsreiter, M.A., Planker, E., Matha, B., Lohof, E., Holzemann, G., Jonczyk, A., Goodman, S.L., Kessler, H., N-Methylated cyclic RGD peptides as highly active and selective αvβ5 integrin antagonists (1999) J. Med. Chem., 42, pp. 3033-3040
Eskens, F.A., Dumez, H., Hoekstra, R., Perschl, A., Brindley, C., Bottcher, S., Wynendaele, W., Van Oosterom, A.T., Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of cilengitide (EMD 121974), a novel inhibitor of the integrins αvβ3 and αvβ5 in patients with advanced solid tumours (2003) Eur. J. Cancer, 39, pp. 917-926
Marinelli, L., Lavecchia, A., Gottschalk, K.E., Novellino, E., Kessler, H., Docking studies on αvβ3 integrin ligands: Pharmacophore refinement and implications for drug design (2003) J. Med. Chem., 46, pp. 4393-4404
Xiong, J.P., Stehle, T., Diefenbach, B., Zhang, R., Dunker, R., Scott, D.L., Joachimiak, A., Arnaout, M.A., Crystal structure of the extracellular segment of integrin αvβ3 (2001) Science, 294, pp. 339-345
Wierzbicka-Patynowski, I., Niewiarowski, S., Marcinkiewicz, C., Calvete, J.J., Marcinkiewicz, M.M., McLane, M.A., Structural requirements of echistatin for the recognition of αvβ3 and α5β1 integrins (1999) J. Biol. Chem., 274, pp. 37809-37814
Yahalom, D., Wittelsberger, A., Mierke, D.F., Rosenblatt, M., Alexander, J., Chorev, M., Identification of the principal binding site for RGD-containing ligands in the αvβ3 integrin: A photoaffinity cross-linking study (2002) Biochemistry, 41, pp. 8321-8331
Saudek, V., Atkinson, R.A., Pelton, J.T., Three-dimensional structure of echistatin, the smallest active RGD protein (1991) Biochemistry, 30, pp. 7369-7372
Dangles, O., Guibe, F., Balavoine, G., Lavielle, S., Marquet, A., Selective cleavage of the allyl and (allyloxy)carbonyl groups through palladium-catalyzed hydrostannolysis with tributyltin hydride. Application to the selective protection-deprotection of amino acid derivatives and in peptide synthesis (1987) J. Org. Chem., 52, pp. 4984-4993
Coste, J., Le-Nguyen, D., Castro, B., PyBOP: A new peptide coupling reagent devoid of toxic byproduct (1990) Tetrahedron Lett., 31, pp. 205-208
Aumailley, M., Gurrath, M., Muller, G., Calvete, J., Timpl, R., Kessler, H., Arg-Gly-Asp constrained within cyclic pentapeptides. Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1 (1991) FEBS Lett., 291, pp. 50-54
Hagler, A.T., Dauber, P., Lifson, S., Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 3. The C=O ⋯H-O hydrogen bond and the analysis of the energetics and packing of carboxylic acids (1979) J. Am. Chem. Soc., 101, pp. 5131-5141
Hagler, A.T., Lifson, S., Dauber, P., Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 2. A benchmark for the objective comparison of alternative force fields (1979) J. Am. Chem. Soc., 101, pp. 5122-5130
Lifson, S., Hagler, A.T., Dauber, P., Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 1. Carboxylic acids, amides, and the C=O⋯H-hydrogen bonds (1979) J. Am. Chem. Soc., 101, pp. 5111-5121
Hynes, R. O., Integrins: Versatility, modulation, and signaling in cell adhesion (1992) Cell, 69, pp. 11-25
Eble, J. A., (1997) Integrin-Ligand Interaction, pp. 1-40. , Springer: Heidelberg, Germany
D'Souza, S. E., Ginsberg, M. H., Plow, E. F., Arginyl-glycyl-aspartic acid (RGD): A cell adhesion motif (1991) Trends Biochem. Sci., 16, pp. 246-250
Could, R. J., Polokoff, M. A., Friedman, P. A., Huang, T. F., Holt, J. C., Cook, J. J., Niewiarowski, S., Disintegrins: A family of integrin inhibitory proteins from viper venoms (1990) Proc. Soc. Exp. Biol. Med., 195, pp. 168-171
Hood, J. D., Cheresh, D. A., Role of integrins in cell invasion and migration (2002) Nat. Rev. Cancer, 2, pp. 91-100
Eliceiri, B. P., Cheresh, D. A., The role of v integrins during angiogenesis: Insights into potential mechanisms of action and clinical development (1999) J. Clin. Invest., 103, pp. 1227-1230
Kumar, C. C., Integrin v 5 as a therapeutic target for blocking tumor-induced angiogenesis (2003) Curr. Drug Targets, 4, pp. 123-131
Filardo, E. J., Brooks, P. C., Deming, S. L., Damsky, C., Cheresh, D. A., Requirement of the NPXY motif in the integrin beta 3 subunit cytoplasmic tail for melanoma cell migration in vitro and in vivo (1995) J. Cell Biol., 130, pp. 441-450
Brooks, P. C., Klemke, R. L., Schon, S., Lewis, J. M., Schwartz, M. A., Cheresh, D. A., Insulin-like growth factor receptor cooperates with integrin v 5 to promote tumor cell dissemination in vivo (1997) J. Clin. Invest., 99, pp. 1390-1398
Walton, H. L., Corjay, M. H., Mohamed, S. N., Mousa, S. A., Santomenna, L. D., Reilly, T. M., Hypoxia induces differential expression of the integrin receptors v 3 and v 5 in cultured human endothelial cells (2000) J. Cell. Biochem., 78, pp. 674-680
Gutheil, J. C., Campbell, T. N., Pierce, P. R., Watkins, J. D., Huse, W. D., Bodkin, D. J., Cheresh, D. A., Targeted antiangiogenic therapy for cancer using vitaxin: A humanized monoclonal antibody to the integrin v 3 (2000) Clin. Cancer Res., 6, pp. 3056-3061
Miller, W. H., Keenan, R. M., Willette, R. N., Lark, M. W., Identification and in vivo efficacy of small-molecule antagonists of integrin v 3 (the vitronectin receptor) (2000) Drug Discover Todav, 5, pp. 397-408
Marugan, J. J., Manthey, C., Anaclerio, B., Lafrance, L., Lu, T., Markotan, T., Leonard, K. A., Tomczuk, B., Design, synthesis, and biological evaluation of novel potent and selective v 3/ v 5 integrin dual inhibitors with improved bioavailability. Selection of the molecular core (2005) J. Med. Chem., 48, pp. 926-934
Sulyok, G. A., Gibson, C., Goodman, S. L., Holzemann, G., Wiesner, M., Kessler, H., Solid-phase synthesis of a nonpeptide RGD mimetic library: New selective v 3 integrin antagonists (2001) J. Med. Chem., 44, pp. 1938-1950
Dechantsreiter, M. A., Planker, E., Matha, B., Lohof, E., Holzemann, G., Jonczyk, A., Goodman, S. L., Kessler, H., N-Methylated cyclic RGD peptides as highly active and selective v 5 integrin antagonists (1999) J. Med. Chem., 42, pp. 3033-3040
Eskens, F. A., Dumez, H., Hoekstra, R., Perschl, A., Brindley, C., Bottcher, S., Wynendaele, W., Van Oosterom, A. T., Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of cilengitide (EMD 121974), a novel inhibitor of the integrins v 3 and v 5 in patients with advanced solid tumours (2003) Eur. J. Cancer, 39, pp. 917-926
Xiong, J. P., Stehle, T., Diefenbach, B., Zhang, R., Dunker, R., Scott, D. L., Joachimiak, A., Arnaout, M. A., Crystal structure of the extracellular segment of integrin v 3 (2001) Science, 294, pp. 339-345
Fields, C. G., Lloyd, D. H., Macdonald, R. L., Otteson, K. M., Noble, R. L., HBTU activation for automated Fmoc solid-phase peptide synthesis (1991) Pept. Res., 4, pp. 95-101
Hagler, A. T., Dauber, P., Lifson, S., Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 3. The C=O H-O hydrogen bond and the analysis of the energetics and packing of carboxylic acids (1979) J. Am. Chem. Soc., 101, pp. 5131-5141
Hagler, A. T., Lifson, S., Dauber, P., Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 2. A benchmark for the objective comparison of alternative force fields (1979) J. Am. Chem. Soc., 101, pp. 5122-5130
Novel And Selective Alpha (v) Beta3 Receptor Peptide Antagonist: Design, Synthesis, And Biological Behavior
Among RGD-dependent integrins, the alpha (v) beta3 receptor has recently received increasing attention as a therapeutic target because of its critical role in tumor-induced angiogenesis and metastasis formation. Here, we describe a new peptide antagonist of alpha (v) beta3 receptor, designed on the basis of the crystal structure of integrin alpha (v) beta3 in complex with c (RGDf [NMe] V) and the NMR structure of echistatin. Cell adhesion assays have demonstrated that the peptide is a potent and selective antagonist of the alpha (v) beta3 receptor
Novel And Selective Alpha (v) Beta3 Receptor Peptide Antagonist: Design, Synthesis, And Biological Behavior
Petraglia F, Singh AA, Carafa V, Nebbioso A, Conte M, Scisciola L, Valente S, Baldi A, Mandoli A, Petrizzi VB, Ingenito C, De Falco S, Cicatiello V, Apicella I, Janssen-megens EM, Kim B, Yi G, Logie C, Heath S, Ruvo M, Wierenga ATJ, Flicek P, Yaspo ML, Della Valle V, Bernard O, Tomassi S, Novellino E, Feoli A, Sbardella G, Gut I, Vellenga E, Stunnenberg HG, Mai A, Martens JHA, Altucci L * Combined HAT/EZH2 modulation leads to cancer-selective cell death(288 views) Oncotarget (ISSN: 1949-2553electronic, 1949-2553linking), 2018 May 22; 9(39): 25630-25646. Impact Factor:5.008 ViewExport to BibTeXExport to EndNote