Microbubble-assisted p53, RB, and p130 gene transfer in combination with radiation therapy in prostate cancer(457 views) Nande R, Greco A, Gossman MS, Lopez JP, Claudio L, Salvatore M, Brunetti A, Denvir J, Howard CM, Claudio PP
Current Gene Therapy (ISSN: 1875-5631, 1566-5232), 2013 Jun 1; 13(3): 163-174.
Keywords: Apoptosis Induction, External Beam Radiation, Microbubbles, P130, Prostate Cancer, Retinoblastoma, Systemic Targeted Viral Gene Delivery, Tumor Suppressor Gene, Ultrasound, Adenovirus Vector, Echo Contrast Medium, Protein P130, Retinoblastoma Protein, Animal Experiment, Animal Model, Animal Tissue, Article, Bioluminescence, Bright Field Microscopy, Cancer Inhibition, Cell Death, Controlled Study, Dna Damage, Flow Cytometry, G2 Phase Cell Cycle Checkpoint, Gene Expression, Genetic Transduction, Human, Human Cell, Mouse, Nonhuman, Phase Contrast Microscopy, Polyacrylamide Gel Electrophoresis, Protein Expression, Tumor Volume, Western Blotting, Adenoviridae, Benzothiazoles, Cell Line, Drug Carriers, Drug Delivery Systems, Female, Gene Transfer Techniques, Genetic Therapy, Genetic Vectors, Luminescent Measurements, Inbred Balb C, Prostatic Neoplasms, Retinoblastoma-Like Protein P130, Transgenes, Ultrasonography, X-Rays, Xenograft Model Antitumor Assays, Mus Musculus,
Affiliations: *** IBB - CNR ***
Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
Department of Biomorphological and Functional Science, University of Naples Federico II, Naples, Italy
CEINGE, Biotecnologie Avanzate, s.c.a.r.l, Italy
Department of Radiation Oncology, Tri-State Regional Cancer Center, Ashland, KY, United States
Urology Department, National Cancer Institute Fondazione Senatore Pascale, Naples, Italy
Department of Surgery, Marshall University, Huntington, WV 25755, United States
References: Dash, R., Azab, B., Shen, X.N., Developing an effective gene therapy for prostate cancer: New technologies with potential to translate from the laboratory into the clinic (2011) Discov Med, 11, pp. 46-5
Howard, C.M., Forsberg, F., Minimo, C., Ultrasound guided site specific gene delivery system using adenoviral vectors and commercial ultrasound contrast agents (2006) J Cell Physiol, 209, pp. 413-421
Greco, A., Di Benedetto, A., Howard, C.M., Eradication of therapy-resistant human prostate tumors using an ultrasoundguided site-specific cancer terminator virus delivery approach (2010) Mol Ther, 18, pp. 295-306
Hernot, S., Klibanov, A.L., Microbubbles in ultrasound-triggered drug and gene delivery (2008) Adv Drug Deliv Rev, 60, pp. 1153-1166
Tsai, C.H., Lin, J.H., Ju, C.P., Gamma-radiation-induced changes in structure and properties of tetracalcium phosphate and its derived calcium phosphate cement (2007) J Biomed Mater Res B Appl Biomater, 80, pp. 244-252
Kastan, M.B., Canman, C.E., Leonard, C.J., P53, cell cycle control and apoptosis: Implications for cancer (1995) Cancer Metastasis Rev, 14, pp. 3-15
Udayakumar, T., Shareef, M.M., Diaz, D.A., Ahmed, M.M., Pollack, A., The E2F1/Rb and p53/MDM2 pathways in DNA repair and apoptosis: Understanding the crosstalk to develop novel strategies for prostate cancer radiotherapy (2010) Semin Radiat Oncol, 20, pp. 258-266
Algan, O., Stobbe, C.C., Helt, A.M., Hanks, G.E., Chapman, J.D., Radiation inactivation of human prostate cancer cells: The role of apoptosis (1996) Radiat Res, 146, pp. 267-275
Pawlik, T.M., Keyomarsi, K., Role of cell cycle in mediating sensitivity to radiotherapy (2004) Int J Radiat Oncol Biol Phys, 59, pp. 928-942
Bromfield, G.P., Meng, A., Warde, P., Bristow, R.G., Cell death in irradiated prostate epithelial cells: Role of apoptotic and clonogenic cell kill (2003) Prostate Cancer Prostatic Dis, 6, pp. 73-85
Bajgelman, M.C., Strauss, B.E., The DU145 human prostate carcinoma cell line harbors a temperature-sensitive allele of p53 (2006) Prostate, 66, pp. 1455-1462
Kuerbitz, S.J., Plunkett, B.S., Walsh, W.V., Kastan, M.B., Wild-type p53 is a cell cycle checkpoint determinant following irradiation (1992) Proc Natl Acad Sci U S A, 89, pp. 7491-7495
Bowen, C., Spiegel, S., Gelmann, E.P., Radiation-induced apoptosis mediated by retinoblastoma protein (1998) Cancer Res, 58, pp. 3275-3281
Sasaki, R., Shirakawa, T., Zhang, Z.J., Additional gene therapy with Ad5CMV-p53 enhanced the efficacy of radiotherapy in human prostate cancer cells (2001) Int J Radiat Oncol Biol Phys, 51, pp. 1336-1345
Bowen, C., Birrer, M., Gelmann, E.P., Retinoblastoma proteinmediated apoptosis after gamma-irradiation (2002) J Biol Chem, 277, pp. 44969-44979
Crook, J.M., Raymond, Y., Salhani, D., Yang, H., Esche, B., Prostate motion during standard radiotherapy as assessed by fiducial markers (1995) Radiother Oncol, 37, pp. 35-42
Pucci, B., Claudio, P.P., Masciullo, V., pRb2/p130 promotes radiation-induced cell death in the glioblastoma cell line HJC12 by p73 upregulation and Bcl-2 downregulation (2002) Oncogene, 21, pp. 5897-5905
Stevens, C.W., Zeng, M., Cerniglia, G.J., Ionizing radiation greatly improves gene transfer efficiency in mammalian cells (1996) Hum Gene Ther, 7, pp. 1727-1734
Pitt, W.G., Husseini, G.A., Staples, B.J., Ultrasonic drug delivery--a general review (2004) Expert Opin Drug Deliv, 1, pp. 37-56
Howard, C.M., The role of ultrasound contrast agents in gene therapy (2004) Applied Radiology, 33 (SUPPL.), pp. 126-135
Swisher, S.G., Roth, J.A., Komaki, R., Induction of p53-regulated genes and tumor regression in lung cancer patients after intratumoral delivery of adenoviral p53 (INGN 201) and radiation therapy (2003) Clin Cancer Res, 9, pp. 93-101
Zhang, H., Li, J., Wang, Y.Y., Retinoblastoma 94 enhances radiation treatment of esophageal squamous cell carcinoma in vitro and in vivo (2012) J Radiat Res, 53, pp. 117-124
Vogiatzi, P., Cassone, M., Claudio, L., Claudio, P.P., Targeted therapy for advanced prostate cancer: Looking through new lenses (2009) Drug News Perspect, 22, pp. 593-601
Vogiatzi, P., Claudio, P.P., Efficacy of abiraterone acetate in postdocetaxel castration-resistant prostate cancer (2010) Expert Rev Anticancer Ther, 10, pp. 1027-1030
Teyssier, F., Bay, J.O., Dionet, C., Verrelle, P., Cell cycle regulation after exposure to ionizing radiation (1999) Bull Cancer, 86, pp. 345-357
Lee, J.T., Lehmann, B.D., Terrian, D.M., Targeting prostate cancer based on signal transduction and cell cycle pathways (2008) Cell Cycle, 7, pp. 1745-1762
Claudio, P.P., Zamparelli, A., Garcia, F.U., Expression of cellcycle- regulated proteins pRb2/p130, p107, p27(kip1), p53, mdm-2, and Ki-67 (MIB-1) in prostatic gland adenocarcinoma (2002) Clin Cancer Res, 8, pp. 1808-1815
Claudio, P.P., Tonini, T., Giordano, A., The retinoblastoma family: Twins or distant cousins? (2002) Genome Biol, 3. , reviews3012
Cowen, D., Salem, N., Ashoori, F., Prostate cancer radiosensitization in vivo with adenovirus-mediated p53 gene therapy (2000) Clin Cancer Res, 6, pp. 4402-4408
Lehmann, B.D., Brooks, A.M., Paine, M.S., Distinct roles for p107 and p130 in Rb-independent cellular senescence (2008) Cell Cycle, 7, pp. 1262-1268
Bott, S.R., Arya, M., Kirby, R.S., Williamson, M., p21WAF1/CIP1 gene is inactivated in metastatic prostatic cancer cell lines by promoter methylation (2005) Prostate Cancer Prostatic Dis, 8, pp. 321-326
Willis, A., Jung, E.J., Wakefield, T., Chen, X., Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes (2004) Oncogene, 23, pp. 2330-2338
Helmbold, H., Deppert, W., Bohn, W., Regulation of cellular senescence by Rb2/p130 (2006) Oncogene, 25, pp. 5257-5262
Harrington, E.A., Bruce, J.L., Harlow, E., Dyson, N., pRB plays an essential role in cell cycle arrest induced by DNA damage (1998) Proc Natl Acad Sci U S A, 95, pp. 11945-11950
Haas-Kogan, D.A., Kogan, S.C., Levi, D., Inhibition of apoptosis by the retinoblastoma gene product (1995) EMBO J, 14, pp. 461-472
Helmbold, H., Komm, N., Deppert, W., Bohn, W., Rb2/p130 is the dominating pocket protein in the p53-p21 DNA damage response pathway leading to senescence (2009) Oncogene, 28, pp. 3456-3467
Dupree, E.L., Mazumder, S., Almasan, A., Genotoxic stress induces expression of E2F4, leading to its association with p130 in prostate carcinoma cells (2004) Cancer Res, 64, pp. 4390-4393
Dummer, R., Bergh, J., Karlsson, Y., Biological activity and safety of adenoviral vector-expressed wild-type p53 after intratumoral injection in melanoma and breast cancer patients with p53-overexpressing tumors (2000) Cancer Gene Ther, 7, pp. 1069-1076
Yen, N., Ioannides, C.G., Xu, K., Cellular and humoral immune responses to adenovirus and p53 protein antigens in patients following intratumoral injection of an adenovirus vector expressing wild-type. P53 (Ad-p53) (2000) Cancer Gene Ther, 7, pp. 530-536
Rochlitz, C.F., Gene therapy of cancer (2001) SMW, 131, pp. 4-9
Goldberg, B.B., Liu, J.B., Forsberg, F., Ultrasound contrast agents: A review (1994) Ultrasound Med Biol, 20, pp. 319-333
Bhatia, V.K., Senior, R., Contrast echocardiography: Evidence for clinical use (2008) J Am Soc Echocardiogr, 21, pp. 409-416
Colletier, P.J., Ashoori, F., Cowen, D., Adenoviral-mediated p53 transgene expression sensitizes both wild-type and null p53 prostate cancer cells in vitro to radiation (2000) Int J Radiat Oncol Biol Phys, 48, pp. 1507-1512
Yang, Z.X., Wang, D., Wang, G., Clinical study of recombinant adenovirus-p53 combined with fractionated stereotactic radiotherapy for hepatocellular carcinoma (2010) J Cancer Res Clin Oncol, 136, pp. 625-630
Lupold, S.E., Rodriguez, R., Adenoviral gene therapy, radiation, and prostate cancer (2005) Rev Urol, 7, pp. 193-202
Nande, R., Di Benedetto, A., Aimola, P., Targeting a newly established spontaneous feline fibrosarcoma cell line by gene transfer (2012) PloS One, 7, pp. e37743
Aimola, P., Carmignani, M., Volpe, A.R., Cadmium induces p53- dependent apoptosis in human prostate epithelial cells (2012) PloS One, 7, pp. e33647
Mukerjee, R., Claudio, P.P., Chang, J.R., Del Valle, L., Sawaya, B.E., Transcriptional regulation of HIV-1 gene expression by p53 (2010) Cell Cycle, 9, pp. 4569-4578
Claudio, P.P., Cui, J., Ghafouri, M., Cdk9 phosphorylates p53 on serine 392 independently of CKII (2006) J Cell Physiol, 208, pp. 602-612
Gossman, M.S., Das, I.J., Sharma, S.C., A novel phantom model for mouse tumor dose assessment under MV beams (2011) Health Phys, 101, pp. 746-753
Lowe, S.W., Bodis, S., McClatchey, A., p53 status and the efficacy of cancer therapy in vivo (1994) Science, 266, pp. 807-810
Howard, C. M., Forsberg, F., Minimo, C., Ultrasound guided site specific gene delivery system using adenoviral vectors and commercial ultrasound contrast agents (2006) J Cell Physiol, 209, pp. 413-421
Tsai, C. H., Lin, J. H., Ju, C. P., Gamma-radiation-induced changes in structure and properties of tetracalcium phosphate and its derived calcium phosphate cement (2007) J Biomed Mater Res B Appl Biomater, 80, pp. 244-252
Kastan, M. B., Canman, C. E., Leonard, C. J., P53, cell cycle control and apoptosis: Implications for cancer (1995) Cancer Metastasis Rev, 14, pp. 3-15
Pawlik, T. M., Keyomarsi, K., Role of cell cycle in mediating sensitivity to radiotherapy (2004) Int J Radiat Oncol Biol Phys, 59, pp. 928-942
Bromfield, G. P., Meng, A., Warde, P., Bristow, R. G., Cell death in irradiated prostate epithelial cells: Role of apoptotic and clonogenic cell kill (2003) Prostate Cancer Prostatic Dis, 6, pp. 73-85
Bajgelman, M. C., Strauss, B. E., The DU145 human prostate carcinoma cell line harbors a temperature-sensitive allele of p53 (2006) Prostate, 66, pp. 1455-1462
Kuerbitz, S. J., Plunkett, B. S., Walsh, W. V., Kastan, M. B., Wild-type p53 is a cell cycle checkpoint determinant following irradiation (1992) Proc Natl Acad Sci U S A, 89, pp. 7491-7495
Crook, J. M., Raymond, Y., Salhani, D., Yang, H., Esche, B., Prostate motion during standard radiotherapy as assessed by fiducial markers (1995) Radiother Oncol, 37, pp. 35-42
Stevens, C. W., Zeng, M., Cerniglia, G. J., Ionizing radiation greatly improves gene transfer efficiency in mammalian cells (1996) Hum Gene Ther, 7, pp. 1727-1734
Pitt, W. G., Husseini, G. A., Staples, B. J., Ultrasonic drug delivery--a general review (2004) Expert Opin Drug Deliv, 1, pp. 37-56
Howard, C. M., The role of ultrasound contrast agents in gene therapy (2004) Applied Radiology, 33 (SUPPL.), pp. 126-135
Swisher, S. G., Roth, J. A., Komaki, R., Induction of p53-regulated genes and tumor regression in lung cancer patients after intratumoral delivery of adenoviral p53 (INGN 201) and radiation therapy (2003) Clin Cancer Res, 9, pp. 93-101
Lee, J. T., Lehmann, B. D., Terrian, D. M., Targeting prostate cancer based on signal transduction and cell cycle pathways (2008) Cell Cycle, 7, pp. 1745-1762
Claudio, P. P., Zamparelli, A., Garcia, F. U., Expression of cellcycle- regulated proteins pRb2/p130, p107, p27 (kip1), p53, mdm-2, and Ki-67 (MIB-1) in prostatic gland adenocarcinoma (2002) Clin Cancer Res, 8, pp. 1808-1815
Claudio, P. P., Tonini, T., Giordano, A., The retinoblastoma family: Twins or distant cousins? (2002) Genome Biol, 3. , reviews3012
Lehmann, B. D., Brooks, A. M., Paine, M. S., Distinct roles for p107 and p130 in Rb-independent cellular senescence (2008) Cell Cycle, 7, pp. 1262-1268
Bott, S. R., Arya, M., Kirby, R. S., Williamson, M., p21WAF1/CIP1 gene is inactivated in metastatic prostatic cancer cell lines by promoter methylation (2005) Prostate Cancer Prostatic Dis, 8, pp. 321-326
Harrington, E. A., Bruce, J. L., Harlow, E., Dyson, N., pRB plays an essential role in cell cycle arrest induced by DNA damage (1998) Proc Natl Acad Sci U S A, 95, pp. 11945-11950
Haas-Kogan, D. A., Kogan, S. C., Levi, D., Inhibition of apoptosis by the retinoblastoma gene product (1995) EMBO J, 14, pp. 461-472
Dupree, E. L., Mazumder, S., Almasan, A., Genotoxic stress induces expression of E2F4, leading to its association with p130 in prostate carcinoma cells (2004) Cancer Res, 64, pp. 4390-4393
Rochlitz, C. F., Gene therapy of cancer (2001) SMW, 131, pp. 4-9
Goldberg, B. B., Liu, J. B., Forsberg, F., Ultrasound contrast agents: A review (1994) Ultrasound Med Biol, 20, pp. 319-333
Bhatia, V. K., Senior, R., Contrast echocardiography: Evidence for clinical use (2008) J Am Soc Echocardiogr, 21, pp. 409-416
Colletier, P. J., Ashoori, F., Cowen, D., Adenoviral-mediated p53 transgene expression sensitizes both wild-type and null p53 prostate cancer cells in vitro to radiation (2000) Int J Radiat Oncol Biol Phys, 48, pp. 1507-1512
Yang, Z. X., Wang, D., Wang, G., Clinical study of recombinant adenovirus-p53 combined with fractionated stereotactic radiotherapy for hepatocellular carcinoma (2010) J Cancer Res Clin Oncol, 136, pp. 625-630
Lupold, S. E., Rodriguez, R., Adenoviral gene therapy, radiation, and prostate cancer (2005) Rev Urol, 7, pp. 193-202
Claudio, P. P., Cui, J., Ghafouri, M., Cdk9 phosphorylates p53 on serine 392 independently of CKII (2006) J Cell Physiol, 208, pp. 602-612
Gossman, M. S., Das, I. J., Sharma, S. C., A novel phantom model for mouse tumor dose assessment under MV beams (2011) Health Phys, 101, pp. 746-753
Lowe, S. W., Bodis, S., McClatchey, A., p53 status and the efficacy of cancer therapy in vivo (1994) Science, 266, pp. 807-810
Microbubble-assisted p53, RB, and p130 gene transfer in combination with radiation therapy in prostate cancer
Combining radiation therapy and direct intratumoral (IT) injection of adenoviral vectors has been explored as a means to enhance the therapeutic potential of gene transfer. A major challenge for gene transfer is systemic delivery of nucleic acids directly into an affected tissue. Ultrasound (US) contrast agents (microbubbles) are viable candidates to enhance targeted delivery of systemically administered genes. Here we show that p53, pRB, and p130 gene transfer mediated by US cavitation of microbubbles at the tumor site resulted in targeted gene transduction and increased reduction in tumor growth compared to DU-145 prostate cancer cell xenografts treated intratumorally with adenovirus (Ad) or radiation alone. Microbubble-assisted/US-mediated Ad.p53 and Ad.RB treated tumors showed significant reduction in tumor volume compared to Ad.p130 treated tumors (p
Microbubble-assisted p53, RB, and p130 gene transfer in combination with radiation therapy in prostate cancer
No results.
Microbubble-assisted p53, RB, and p130 gene transfer in combination with radiation therapy in prostate cancer