Does Tetracycline Bind Helix 2 Of Prion? An Integrated Spectroscopical And Computational Study Of The Interaction Between The Antibiotic And Alpha Helix 2 Human Prion Protein Fragments
Does Tetracycline Bind Helix 2 Of Prion? An Integrated Spectroscopical And Computational Study Of The Interaction Between The Antibiotic And Alpha Helix 2 Human Prion Protein Fragments(600 views) Ronga L, Langella E, Palladino P, Marasco D, Tizzano B, Saviano M, Pedone C, Improta R, Ruvo M
Proteins (ISSN: 0887-3585, 1097-0134, 1097-0134electronic), 2007 Feb 15; 66(3): 707-715.
Istituto di Biostrutture e Bioimmagini del CNR, Sezione Biostrutture, via Mezzocannone 16, 80134 Napoli, Italy
Dipartimento delle Scienze Biologiche, Sezione Biostrutture, Università Federico II, via Mezzocannone, 16, 80134 Napoli, Italy
References: Porat, Y., Ambramotitz, A., Gazit, E., Inhibition of amyloid fibril formation by polyphenols: Structural similarity and aromatic interactions as a common inhibition mechanism (2006) Chem Biol Drug Des, 67, pp. 27-3
May, B.C.H., Fafarman, A.T., Hong, S.B., Rogers, M., Deady, L.W., Prusiner, S.B., Cohen, F.E., Potent inhibition of scrapie prion replication in cultured cells by bis-acridines (2003) Proc Natl Acad Sci USA, 100, pp. 3416-3421
Tagliavini, F., Forloni, G., Colombo, L., Rossi, G., Girala, L., Canciani, B., Angeretti, N., Salmona, M., Tetracycline affects abnormal properties of synthetic PrP peptides and PrPSc in vitro (2000) J Mol Biol, 300, pp. 1309-1322
Forloni, G., Iussich, S., Awan, T., Colombo, L., Angeretti, N., Girala, L., Bertani, I., Tagliavini, F., Tetracyclines affect prion infectivity (2002) Proc Natl Acad Sci USA, 99, pp. 10849-10854
Forloni, G., Angeretti, N., Chiesa, R., Monzani, E., Salmona, M., Bugiani, O., Tagliavini, F., Neurotoxicity of a prion protein fragment (1993) Nature, 362, pp. 543-546
Forloni, G., Del Bo, R., Angeretti, N., Chiesa, R., Smiroldo, S., Doni, R., Ghigaudi, E., Tagliavini, F., A neurotoxic prion protein fragment induces rat astroglial proliferation and hypertrophy (1994) Eur J Neurosci, 6, pp. 1415-1422
Selvaggini, C., Del Gioia, L., Cantù, L., Ghibaudi, E., Diomede, L., Psserini, F., Forloni, G., Salmona, M., Molecular characteristics of a protease-resistant amyloidogenic and neurotoxic peptide homologous to residues 106-126 of the prion protein (1993) Biochem Biophys Res, 194, pp. 1380-1386
Tagliavini, F., Prelli, F., Verga, L., Giaccone, G., Sarma, R., Gorevic, P., Ghetti, B., Frangione, B., Synthetic peptides homologous to prion protein residues 106-147 form amyloid-like fibrils in vitro (1993) Proc Natl Acad Sci USA, 90, pp. 9678-9682
Brown, D., Schmidt, B., Kretzschmar, H.A., Role of microglia and host prion protein in neurotoxicity of a prion protein fragment (1996) Nature, 380, pp. 345-347
Knaus, K.J., Morillas, M., Swietnicki, W., Malone, M., Surewicz, W., Yee, V.C., Crystal structure of the human prion protein reveals a mechanism for oligomerization (2001) Nat Struct Biol, 8, pp. 770-774
Zahn, R., Liu, A., Lührs, T., Riek, R., von Schroetter, C., Garcia, F.L., Billeter, M., Wüthrich, K., NMR solution structure of the human prion protein (2000) Proc Natl Acad Sci USA, 97, pp. 145-150
Tizzano, B., Palladino, P., De Capua, A., Marasco, D., Rossi, F., Benedetti, E., Pedone, C., Ruvo, M., The human prion protein α2 helix: A thermodynamic study of its conformational preferences. Proteins: Struct Funct (2005) Bioinform, 59, pp. 72-79
Haire, L.F., Whyte, S.M., Vasisht, N., Gill, A.C., Verma, C., Dodson, E.J., Dodson, G.G., Bayley, P.M., The crystal structure of the globular domain of sheep prion protein (2003) J Mol Biol, 336, pp. 1175-1183
Chou, P.Y., Fasman, G.D., Prediction of protein conformation (1974) Biochemistry, 13, pp. 222-245
Pinsuwan, S., Alvarez-Nunez, F.A., Tabibi, S.E., Yalkowsky, S.H., Spectrophotometric determination of acidity constants of 4-dedimethylamino sancycline Col-3 a new antitumor drug (1999) J Pharm Sci, 88, pp. 535-537
Abramov, A.Y., Canevari, L., Duchen, M.R., Calcium signals induced by amyloid beta peptide and their consequences in neurons and astrocytes in culture (2004) Biochim Biophys Acta, 6, pp. 81-87
Palladino, P., Pedone, C., Ragone, R., Rossi, F., Saviano, M., Benedetti, E., A simplified model of the binding interaction between stromal cell-derived factor-1 chemokine and CXC chemokine receptor 4 (2003) Protein Pept Lett, 10, pp. 133-138
Ragone, R., De Luca, S., Tesauro, D., Pedone, C., Morelli, G., Fluorescence studies on the binding between 1-47 fragment of cholecystokinin receptor CCKA-R(1-47) and nonsulfated cholecystokinin octapeptide CCK8 (2000) Biopolymers, 56, pp. 47-53
Othersen, O.G., Beierlein, F., Lanig, H., Clark, T., Conformations and tautomers of tetracycline (2003) J Phys Chem B, 107, pp. 13743-13749
Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J., Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function (1998) J Comput Chem, 19, pp. 1639-1662
Kisker, C., Hinrichs, W., Tovar, K., Hillen, H., Saenger, W., The complex formed between tet repressor and tetracycline-Mg2+ reveals mechanism of antibiotic resistance (1995) J Mol Biol, 247, pp. 260-280
Hetenyi, C., van der Spoel, D., Efficient docking of peptides to proteins without prior knowledge of the binding site (2002) Protein Sci, 11, pp. 1729-1737
Schuettelkopf, W., van Aalten, D.M.F., PRODRG-a tool for high-throughput crystallography of protein-ligand complexes (2004) Acta Crystallogr D, 60, pp. 1355-1363
Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Hermans, J., (1981) Intermolecular Forces, pp. 331-342. , Pullman, B, editor, Dordrecht, The Netherlands: Reidel
Brown, D., Clarke, J.H.R., A comparison of constant energy constant temperature and constant pressure ensembles in molecular dynamics simulations of atomic liquids (1984) Mol Phys, 51, pp. 1243-1252
Hess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.G.E.M., LINGS: A linear constraint solver for molecular simulations (1997) J Comput Chem, 18, pp. 1463-1472
Darden, T., York, D., Pedersen, L., Particle mesh Ewald: An N×logN method for Ewald sums in large systems (1993) J Chem Phys, 98, pp. 10089-10092
Darden, T., Perera, L., Li, L., Pedersen, L., New tricks for modelers from the crystallography toolkit: The particle mesh Ewald algorithm and its use in nucleic acid simulations (1999) Structure, 7, pp. R55-R60
van der Spoel, D., van Drunen, R., Berendsen, H.J.C., (1994) GROningen MAchine for chemical simulation, , Department of Biophysical Chemistry, BIOSON Research Institute. Nijenborgh, Groningen
van Gunsteren WF, Berendsen HJC. Groningen: Laboratory of Physical Chemistry, University of Groningen
1986van Buuren, A.R.S., Marrink, J., Berendsen, H.J.C., A molecular dynamics study of the decane/water interface (1993) J Phys Chem, 97, pp. 9206-9212
Koradi, R., Billeter, M., Wüthrich, K., MOLMOL: A program for display and analysis of macromolecular structures (1996) J Mol Graphics, 14, pp. 51-55
D'Ursi, A.M., Arenante, M.R., Guerrini, R., Salvatori, S., Sorrentino, G., Picone, D., Solution structure of amyloid β-peptide 25-35 in different media (2004) J Med Chem, 47, pp. 4231-4238
Vuilleumier, S., Mutter, M., Synthetic peptide and template-assembled synthetic protein models of the hen egg white lysozyme 87-97 helix: Importance of a protein-like framework for conformational stability in a short peptide sequence (1993) Biopolymers, 33, pp. 389-400
Langella, E., Improta, R., Barone, V., Checking the pH-induced conformational transition of prion protein by molecular dynamics simulations: Effect of protonation of histidine residues (2004) Biophys J, 87, pp. 3623-3632
Dima, R.I., Thirumalai, D., Probing the instabilities in the dynamics of helical fragments from mouse PrPC (2004) Proc Natl Acad Sci USA, 101, pp. 15335-15340
Pappalardo, M., Miliardi, D., La Rosa, C., Zannoni, C., Rizzarelli, E., Grasso, D., A molecular dynamics study on the conformational stability of PrP 180-193 helix II prion fragment (1998) Chem Phys Lett, 390, pp. 511-516
Shamsir, M.S., Dalby, A.R., One gene two diseases and three conformations: Molecular dynamics simulations of mutants of human prion protein at room temperature and elevated temperatures. Proteins: Struct Funct (2005) Bioinform, 59, pp. 72-79
Colacino, S., Tiana, G., Broglia, R.A., Colombo, G., The determinants of stability in the human prion protein: Insights into folding and misfolding from the analysis of the change in the stabilization energy distribution in different conditions. Proteins: Struct Funct (2006) Bioinform, 62, pp. 698-707
Govaerts, C., Wille, H., Prusiner, S.B., Cohen, F.E., Evidence for assembly of prions with left-handed β-helices into trimers (2004) Proc Natl Acad Sci USA, 22, pp. 8342-8347
May, B. C. H., Fafarman, A. T., Hong, S. B., Rogers, M., Deady, L. W., Prusiner, S. B., Cohen, F. E., Potent inhibition of scrapie prion replication in cultured cells by bis-acridines (2003) Proc Natl Acad Sci USA, 100, pp. 3416-3421
Knaus, K. J., Morillas, M., Swietnicki, W., Malone, M., Surewicz, W., Yee, V. C., Crystal structure of the human prion protein reveals a mechanism for oligomerization (2001) Nat Struct Biol, 8, pp. 770-774
Haire, L. F., Whyte, S. M., Vasisht, N., Gill, A. C., Verma, C., Dodson, E. J., Dodson, G. G., Bayley, P. M., The crystal structure of the globular domain of sheep prion protein (2003) J Mol Biol, 336, pp. 1175-1183
Chou, P. Y., Fasman, G. D., Prediction of protein conformation (1974) Biochemistry, 13, pp. 222-245
Abramov, A. Y., Canevari, L., Duchen, M. R., Calcium signals induced by amyloid beta peptide and their consequences in neurons and astrocytes in culture (2004) Biochim Biophys Acta, 6, pp. 81-87
Othersen, O. G., Beierlein, F., Lanig, H., Clark, T., Conformations and tautomers of tetracycline (2003) J Phys Chem B, 107, pp. 13743-13749
Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., Olson, A. J., Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function (1998) J Comput Chem, 19, pp. 1639-1662
Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., Hermans, J., (1981) Intermolecular Forces, pp. 331-342. , Pullman, B, editor, Dordrecht, The Netherlands: Reidel
1986van Buuren, A. R. S., Marrink, J., Berendsen, H. J. C., A molecular dynamics study of the decane/water interface (1993) J Phys Chem, 97, pp. 9206-9212
D'Ursi, A. M., Arenante, M. R., Guerrini, R., Salvatori, S., Sorrentino, G., Picone, D., Solution structure of amyloid -peptide 25-35 in different media (2004) J Med Chem, 47, pp. 4231-4238
Dima, R. I., Thirumalai, D., Probing the instabilities in the dynamics of helical fragments from mouse PrPC (2004) Proc Natl Acad Sci USA, 101, pp. 15335-15340
Shamsir, M. S., Dalby, A. R., One gene two diseases and three conformations: Molecular dynamics simulations of mutants of human prion protein at room temperature and elevated temperatures. Proteins: Struct Funct (2005) Bioinform, 59, pp. 72-79
Does Tetracycline Bind Helix 2 Of Prion? An Integrated Spectroscopical And Computational Study Of The Interaction Between The Antibiotic And Alpha Helix 2 Human Prion Protein Fragments
We demonstrate here that tetracycline (TC) can strongly interact (K-D = 189 +/- 7 nM) with model peptides derived from the C-terminal globular domain of the prion protein, hPrP [173-195], and that interaction concerns residues within the C-terminal half of the helix 2, a short region previously indicated as endowed with ambivalent conformational behavior and implicated in PrP conversion to the P-sheet-rich, infective scrapie variant. Data have been confirmed by binding studies with the N-terminal truncated 180-195 variant that displays a dissociation constant of 483 +/- 30 nM. Remarkably, TC does not influence the structure of the N-terminally fluoresceinated peptides that both show alpha-helical conformations. Docking calculations and molecular dynamics simulations suggest a direct, strong interaction of the antibiotic with exposed side chain functional groups of threonines 190-193 on the solvent-exposed surface of helix 2. Proteins 2007; 66: 707-715. (c) 2006 Wiley-Liss, Inc
Does Tetracycline Bind Helix 2 Of Prion? An Integrated Spectroscopical And Computational Study Of The Interaction Between The Antibiotic And Alpha Helix 2 Human Prion Protein Fragments
Does Tetracycline Bind Helix 2 Of Prion? An Integrated Spectroscopical And Computational Study Of The Interaction Between The Antibiotic And Alpha Helix 2 Human Prion Protein Fragments