The Human Prion Protein Alpha2 Helix: A Thermodynamic Study Of Its Conformational Preferences(533 views) Tizzano B, Palladino P, De Capua A, Marasco D, Rossi F, Benedetti E, Pedone C, Ragone R, Ruvo M
Dipartimento di Chimica Biologica, Univ. Federico II di Napoli, Napoli, Italy
Ist. Biostrutture Bioimmagini C.N.R., Napoli, Italy
CIRPeB, Napoli, Italy
Dipto. di Biochimica e Biofisica, Seconda Università di Napoli, Napoli, Italy
Ist. di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 6, 80134 Napoli, Italy
References: Sinha, N., Tsai, C.-J., Nussinov, R., A proposed structural model for amyloid fibril elongation: Domain swapping forms an interdigitating β-structure polymer (2001) Protein Eng, 14, pp. 93-10
Prusiner, S.B., Prions (1998) Proc Natl Acad Sci USA, 95, pp. 13363-13383
Horwich, A.L., Weissman, J.S., Deadly conformations-protein misfolding in prion disease (1977) Cell, 89, pp. 499-510
Pan, K.H., Baldwin, M., Nguyen, J., Gasset, M., Serban, A., Groth, D., Mehlhorn, I., Prusiner, S.B., Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins (1993) Proc Natl Acad Sci USA, 90, pp. 10962-10966
Riek, R., Hornemann, S., Wider, G., Billeter, M., Glockshuber, R., Wüthrich, K., NMR structure of the mouse prion protein domain PrP(121-231) (1996) Nature, 382, pp. 180-182
Donne, D.G., Viles, J.H., Groth, D., Mehlhorn, I., James, T.L., Cohen, F.E., Prusiner, S.B., Dyson, H.J., Structure of the recombinant full-length hamster prion protein PrP(29-231): The N terminus is highly flexible (1997) Proc Natl Acad Sci USA, 94, pp. 13452-13457
Zahn, R., Liu, A., Luhrs, T., Riek, R., Von Schroetter, C., Lopez Garcia, F., Billeter, M., Wüthrich, K., NMR solution structure of the human prion protein (2000) Proc Natl Acad Sci USA, 97, pp. 145-150
Lopez Garcia, F., Zahn, R., Riek, R., Wüthrich, K., NMR structure of the bovine prion protein (2000) Proc Natl Acad Sci USA, 97, pp. 8334-8339
Calzolai, L., Zahn, R., Influence of pH on NMR structure and stability of the human prion protein globular domain (2003) J Biol Chem, 278, pp. 35592-35596
Wille, H., Michelitsch, M.D., Guénebaut, V., Supattapone, S., Serban, A., Cohen, F.E., Agard, D.A., Prusiner, S.B., Structural studies of the scrapie prion protein by electron crystallography (2002) Proc Natl Acad Sci USA, 99, pp. 3563-3568
Thompson, A., White, A.R., McLean, C., Masters, C.L., Cappai, R., Barrow, C.J., Amyloidogenicity and neurotoxicity of peptides corresponding to the helical regions of PrP(C) (2000) J Neurosci Res, 62, pp. 293-301
Caughey, B.W., Dong, A., Bhat, K.S., Ernst, D., Hayes, S.F., Caughey, W.S., Secondary structure analysis of the scrapie-associated protein PrP 27-30 in water by infrared spectroscopy (1991) Biochemistry, 30, pp. 7672-7680
Knaus, K.J., Morillas, M., Swietnicki, W., Malone, M., Surewicz, W.K., Yee, V.C., Crystal structure of the human prion protein reveals a mechanism for oligomerization (2001) Nat Struct Biol, 8, pp. 770-774
Welker, E., Raymond, L.D., Scheraga, H.A., Caughey, B., Intramolecular versus intermolecular disulfide bonds in prion proteins (2002) J Biol Chem, 277, pp. 33477-33481
Prusiner, S.B., Inherited prion diseases (1994) Proc Natl Acad Sci USA, 91, pp. 4611-4614
Chou, P.Y., Fasman, G.D., Prediction of protein conformation (1974) Biochemistry, 13, pp. 222-245
Bosques, C.J., Imperiali, B., The interplay of glycosylation and disulfide formation influences fibrillization in a prion protein fragment (2003) Proc Natl Acad Sci USA, 100, pp. 7593-7598
Brown, D.R., Guantieri, V., Grasso, G., Impellizzeri, G., Pappalardo, G., Rizzarelli, E., Copper(II) complexes of peptide fragments of the prion protein. Conformation changes induced by copper(II) and the binding motif in C-terminal protein region (2004) J Inorg Biochem, 98, pp. 133-143
Haire, L.F., Whyte, S.M., Vasisht, N., Gill, A.C., Verma, C., Dodson, E.J., Dodson, G.G., Bayley, P.M., The crystal structure of the globular domain of sheep prion protein (2004) J Mol Biol, 336, pp. 1175-1183
Jones, D.T., Protein secondary structure prediction based on position-specific scoring matrices (1999) J Mol Biol, 292, pp. 195-202
McGuffin, L.J., Bryson, K., Jones, D.T., The PSIPRED protein structure prediction server (2000) Bioinformatics, 16, pp. 404-405
Muñoz, V., Serrano, L., Elucidating the folding problem of helical peptides using empirical parameters. II. Helix macrodipole effects and rational modification of the helical content of natural peptides (1994) J Mol Biol, 245, pp. 275-296
Lacroix, E., Viguera, A.R., Serrano, L., Elucidating the folding problem of α-helices: Local motifs, long-range electrostatics, ionicstrength dependence and prediction of NMR parameters (1998) J Mol Biol, 284, pp. 173-191
Esposito, C., Colicchio, P., Facchiano, A., Ragone, R., Effect of a weak electrolyte on the critical micellar concentration of sodium dodecyl sulfate (1998) J Colloid Interface Sci, 200, pp. 310-312
Le Maire, M., Champeil, P., Møller, J.V., Interaction of membrane proteins and lipids with solubilizing detergents (2000) Biochim Biophys Acta, 1508, pp. 86-111
Kuroda, Y., Maeda, Y., Sawa, S., Shibata, K., Miyamoto, K., Nakagawa, T., Effects of detergents on the secondary structures of prion protein peptides as studied by CD spectroscopy (2003) J Pept Sci, 9, pp. 212-220
Fasman, G.D., (1976) Handbook of Biochemistry and Molecular Biology, 3rd Ed., pp. 183-203. , CRC Press: Boca Raton
Santoro, M.M., Bolen, D.W., Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants (1988) Biochemistry, 27, pp. 8063-8068
Eftink, M.R., The use of fluorescence methods to monitor unfolding transitions in proteins (1994) Biophys J, 66, pp. 482-501
Bordbar, A.K., Saboury, A.A., Housaindokht, M.R., Moosavi-Movahedi, A.A., Statistical effects of the binding of ionic surfactant to protein (1997) J Colloid Interface Sci, 192, pp. 415-419
Ambrosone, L., Ragone, R., The interaction of micelles with added species and its similarity to the denaturant binding model of proteins (1998) J Colloid Interface Sci, 205, pp. 454-458
Yang, J.T., Wu, C.S.C., Martinez, H.M., Calculation of protein conformation from circular dichroism (1986) Meth Enzymol, 130, pp. 208-269
Zhong, L., Johnson Jr., W.C., Environment affects amino acid preference for secondary structure (1992) Proc Natl Acad Sci USA, 89, pp. 4462-4465
Nelson, J.W., Kallenbach, N.R., Stabilization of the ribonuclease S-peptide α-helix by trifluoroethanol (1986) Proteins, 1, pp. 211-217
Merutka, G., Stellwagen, E., Analysis of peptides for helical prediction (1989) Biochemistry, 28, pp. 352-357
Jasanoff, A., Fersht, A.R., Quantitative determination of helical propensities from trifluoroethanol titration curves (1994) Biochemistry, 33, pp. 2129-2135
Schönbrunner, N., Wey, J., Engels, J., Georg, H., Kiefhaber, T., Native-like β-structure in a trifluoroethanol-induced partially folded state of the all-β-sheet protein tendamistat (1996) J Mol Biol, 260, pp. 432-445
Buck, M., Trifluoroethanol and colleagues: Cosolvents come of age. Recent studies with peptides and proteins (1998) Q Rev Biophys, 31, pp. 297-355
Wu, C.S., Yang, J.T., Sequence-dependent conformations of short polypeptides in a hydrophobic environment (1981) Mol Cell Biochem, 40, pp. 109-122
Wu, C.S., Ikeda, K., Yang, J.T., Ordered conformation of polypeptides and proteins in acidic dodecyl sulfate solution (1981) Biochemistry, 20, pp. 566-570
Tanford, C., Protein denaturation. C. Theoretical models for the mechanism of denaturation (1970) Adv Protein Chem, 24, pp. 1-95
Wu, J.W., Wang, Z.X., New evidence for the denaturant binding model (1999) Protein Sci, 8, pp. 2090-2097
Schellman, J.A., Selective binding and solvent denaturation (1987) Biopolymers, 26, pp. 549-559
Koehl, P., Levitt, M., Structure-based conformational preferences of amino acids (1999) Proc Natl Acad Sci USA, 96, pp. 12524-12529
Hegde, R.S., Tremblay, P., Groth, D., DeArmond, S.J., Prusiner, S.B., Lingappa, V.R., Transmissible and genetic prion diseases share a common pathway of neurodegeneration (1999) Nature, 402, pp. 822-826
Riek, R., Wutrich, K., Prion protein NMR structure and familial human spongiform encephalopathies (1998) Proc Natl Acad Sci USA, 95, pp. 11667-11672
Temussi, P.A., Masino, L., Pastore, A., From Alzheimer to Huntington: Why is a structural understanding so difficult? (2003) EMBO J, 22, pp. 355-361
Ikeda, K., Higo, J., Free-energy landscape of a chameleon sequence in explicit water and its inherent α/β bifacial property (2003) Protein Sci, 12, pp. 2542-2548
Zhou, X., Alber, F., Folkers, G., Gonnet, G.H., Chelvanayagam, G., An analysis of the helix to strand transition between peptides with identical sequence (2000) Proteins, 41, pp. 248-256
Salmona, M., Morbin, M., Massignan, T., Colombo, L., Mazzoleni, G., Capobianco, R., Diomede, L., Musco, G., Structural properties of Gerstmann-Sträussler-Scheinker disease amyloid protein (2003) J Biol Chem, 28, pp. 48146-48153
Ma, J., Wollmann, R., Lindquist, S., Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol (2002) Science, 298, pp. 1781-1785
Prusiner, S. B., Prions (1998) Proc Natl Acad Sci USA, 95, pp. 13363-13383
Horwich, A. L., Weissman, J. S., Deadly conformations-protein misfolding in prion disease (1977) Cell, 89, pp. 499-510
Pan, K. H., Baldwin, M., Nguyen, J., Gasset, M., Serban, A., Groth, D., Mehlhorn, I., Prusiner, S. B., Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins (1993) Proc Natl Acad Sci USA, 90, pp. 10962-10966
Donne, D. G., Viles, J. H., Groth, D., Mehlhorn, I., James, T. L., Cohen, F. E., Prusiner, S. B., Dyson, H. J., Structure of the recombinant full-length hamster prion protein PrP (29-231): The N terminus is highly flexible (1997) Proc Natl Acad Sci USA, 94, pp. 13452-13457
Caughey, B. W., Dong, A., Bhat, K. S., Ernst, D., Hayes, S. F., Caughey, W. S., Secondary structure analysis of the scrapie-associated protein PrP 27-30 in water by infrared spectroscopy (1991) Biochemistry, 30, pp. 7672-7680
Knaus, K. J., Morillas, M., Swietnicki, W., Malone, M., Surewicz, W. K., Yee, V. C., Crystal structure of the human prion protein reveals a mechanism for oligomerization (2001) Nat Struct Biol, 8, pp. 770-774
Prusiner, S. B., Inherited prion diseases (1994) Proc Natl Acad Sci USA, 91, pp. 4611-4614
Chou, P. Y., Fasman, G. D., Prediction of protein conformation (1974) Biochemistry, 13, pp. 222-245
Bosques, C. J., Imperiali, B., The interplay of glycosylation and disulfide formation influences fibrillization in a prion protein fragment (2003) Proc Natl Acad Sci USA, 100, pp. 7593-7598
Brown, D. R., Guantieri, V., Grasso, G., Impellizzeri, G., Pappalardo, G., Rizzarelli, E., Copper (II) complexes of peptide fragments of the prion protein. Conformation changes induced by copper (II) and the binding motif in C-terminal protein region (2004) J Inorg Biochem, 98, pp. 133-143
Haire, L. F., Whyte, S. M., Vasisht, N., Gill, A. C., Verma, C., Dodson, E. J., Dodson, G. G., Bayley, P. M., The crystal structure of the globular domain of sheep prion protein (2004) J Mol Biol, 336, pp. 1175-1183
Jones, D. T., Protein secondary structure prediction based on position-specific scoring matrices (1999) J Mol Biol, 292, pp. 195-202
McGuffin, L. J., Bryson, K., Jones, D. T., The PSIPRED protein structure prediction server (2000) Bioinformatics, 16, pp. 404-405
Mu oz, V., Serrano, L., Elucidating the folding problem of helical peptides using empirical parameters. II. Helix macrodipole effects and rational modification of the helical content of natural peptides (1994) J Mol Biol, 245, pp. 275-296
Fasman, G. D., (1976) Handbook of Biochemistry and Molecular Biology, 3rd Ed., pp. 183-203. , CRC Press: Boca Raton
Santoro, M. M., Bolen, D. W., Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants (1988) Biochemistry, 27, pp. 8063-8068
Eftink, M. R., The use of fluorescence methods to monitor unfolding transitions in proteins (1994) Biophys J, 66, pp. 482-501
Bordbar, A. K., Saboury, A. A., Housaindokht, M. R., Moosavi-Movahedi, A. A., Statistical effects of the binding of ionic surfactant to protein (1997) J Colloid Interface Sci, 192, pp. 415-419
Yang, J. T., Wu, C. S. C., Martinez, H. M., Calculation of protein conformation from circular dichroism (1986) Meth Enzymol, 130, pp. 208-269
Nelson, J. W., Kallenbach, N. R., Stabilization of the ribonuclease S-peptide -helix by trifluoroethanol (1986) Proteins, 1, pp. 211-217
Sch nbrunner, N., Wey, J., Engels, J., Georg, H., Kiefhaber, T., Native-like -structure in a trifluoroethanol-induced partially folded state of the all- -sheet protein tendamistat (1996) J Mol Biol, 260, pp. 432-445
Wu, C. S., Yang, J. T., Sequence-dependent conformations of short polypeptides in a hydrophobic environment (1981) Mol Cell Biochem, 40, pp. 109-122
Wu, C. S., Ikeda, K., Yang, J. T., Ordered conformation of polypeptides and proteins in acidic dodecyl sulfate solution (1981) Biochemistry, 20, pp. 566-570
Wu, J. W., Wang, Z. X., New evidence for the denaturant binding model (1999) Protein Sci, 8, pp. 2090-2097
Schellman, J. A., Selective binding and solvent denaturation (1987) Biopolymers, 26, pp. 549-559
Hegde, R. S., Tremblay, P., Groth, D., DeArmond, S. J., Prusiner, S. B., Lingappa, V. R., Transmissible and genetic prion diseases share a common pathway of neurodegeneration (1999) Nature, 402, pp. 822-826
Temussi, P. A., Masino, L., Pastore, A., From Alzheimer to Huntington: Why is a structural understanding so difficult? (2003) EMBO J, 22, pp. 355-361
The Human Prion Protein Alpha2 Helix: A Thermodynamic Study Of Its Conformational Preferences
We have synthesized both free and terminally-blocked peptide corresponding to the second helical region of the globular domain of normal human prion protein, which has recently gained the attention of structural biologists because of a possible role in the nucleation process and fibrillization of prion protein. The profile of the circular dichroism spectrum of the free peptide was that typical of alpha-helix, but was converted to that of beta-structure in about 16 h. Instead, below 2. 1 X 10 (-5) M, the spectrum of the blocked peptide exhibited a single band centered at 200 nm, unequivocally associated to random conformations, which did not evolve even after 24 h. Conformational preferences of this last peptide have been investigated as a function of temperature, using trifluoroethanol or low-concentration sodium dodecyl sulfate as alpha- or beta-structure inducers, respectively. Extrapolation of free energy data to zero concentration of structuring agent highlighted that the peptide prefers alpha-helical to beta-type organization, in spite of results from prediction algorithms. However, the free energy difference between the two forms, as obtained by a thermodynamic cycle, is subtle (roughly 5-8 kJ mol (-1) at any temperature from 280 K to 350 K), suggesting conformational. ambivalence. This result supports the view that, in the prion protein, the structural behavior of the peptide is governed by the cellular microenvironment. (C) 2005 Wiley-Liss, Inc
The Human Prion Protein Alpha2 Helix: A Thermodynamic Study Of Its Conformational Preferences