Keywords: Dna, Isothermal Amplification Methods, Microfluidics, Miniaturization, Nucleic Acid, Automation, Dna Determination, Helicase Dependent Amplification, High Throughput Screening, Loop Mediated Isothermal Amplification, Multiple Displacement Amplification, Nucleic Acid Amplification, Nucleic Acid Sequence Based Amplification, Nucleotide Sequence, Polymerase Chain Reaction, Recombinase Polymerase Amplification, Review, Rolling Circle Amplification, Sensitivity Analysis, Temperature Dependence,
Affiliations: *** IBB - CNR ***
Istituto Biostrutture e Bioimmagini, CNR, Viale A. Doria 6, Catania, Italy
Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
References: D'Agata, R., Breveglieri, G., Zanoli, L.M., Borgatti, M., Spoto, G., Gambari, R., Direct detection of point mutations in nonamplified human genomic DNA (2011) Anal. Chem., 83, pp. 8711-871
Marchelli, R., Tedeschi, T., Tonelli, A., DNA analyses in food safety and quality: Current status and expectations (2012) Detection of Non-Amplified Genomic DNA
Spoto, G., Corradini, R., Eds., pp. 25-63. , Springer: Dordrecht, The Netherland
D'Agata, R., Corradini, R., Ferretti, C., Zanoli, L., Gatti, M., Marchelli, R., Spoto, G., Ultrasensitive detection of non-amplified genomic DNA by nanoparticle-enhanced Surface-Plasmon Resonance Imaging (2010) Biosens. Bioelectron., 25, pp. 2095-2100
Shi, L., Perkins, R.G., Fang, H., Tong, W., Reproducible and reliable microarray results through quality control: Good laboratory proficiency and appropriate data analysis practices are essential (2008) Curr. Opin. Biotechnol., 19, pp. 10-18
Spoto, G., Minunni, M., Surface Plasmon Resonance imaging: What's next? (2012) J. Phys. Chem. Lett., 3, pp. 2682-2691
Zanoli, L.M., D'Agata, R., Spoto, G., Functionalized gold nanoparticles for the ultrasensitive DNA detection (2012) Anal. Bioanal. Chem., 402, pp. 1759-1771
Asiello, P.J., Baeumner, A.J., Miniaturized isothermal nucleic acid amplification, a review (2011) Lab Chip, 11, pp. 1420-1430
Leng, X., Zhang, W., Wang, C., Cui, L., Yang, C.J., Agarose droplet microfluidics for highly parallel and efficient single molecule emulsion PCR (2010) Lab Chip, 10, pp. 2841-2843
Kojima, T., Takei, Y., Ohtsuka, M., Kawarasaki, Y., Yamane, T., Nakano, H., PCR amplification from single DNA molecules on magnetic beads in emulsion: application for high-throughput screening of transcription factor targets (2005) Nucleic Acids Res., p. 33. , doi: 101093/nar/gni143
Kim, J., Easley, C.J., Isothermal DNA amplification in bioanalysis: Strategies and applications (2011) Bioanalysis, 3, pp. 227-239
Whitesides, G.M., The origins and future of microfluidics (2006) Nature, 422, pp. 368-373
Beebe, D.J., Mensing, G.A., Walker, G.M., Physics and applications of microfluidics in biology (2002) Annu. Rev. Biomed. Eng., 4, pp. 261-286
Stone, H.A., Stroock, A.D., Ajdari, A., Engineering flows in small devices: Microfluidics toward a lab-on-a-chip (2004) Annu. Rev. Fluid Mech., 36, pp. 381-411
Squires, T.M., Quake, S.R., Microfluidics: Fluid physics at the nanoliter scale (2005) Rev. Mod. Phys., 77, pp. 977-1026
Buchegger, W., Haller, A., van den Driesche, S., Kraft, M., Lendl, B., Vellekoop, M., Studying enzymatic bioreactions in a millisecond microfluidic flow mixer (2012) Biomicrofluidics, 6, pp. 12803-128039
Buchegger, W., Wagner, C., Lendl, B., Kraft, M., Vellekoop, M., A highly uniform lamination micromixer with wedge shaped inlet channels for time resolved infrared spectroscopy (2011) Microfluid. Nanofluid., 10, pp. 889-897
Lee, C.-Y., Chang, C.-L., Wang, Y.-N., Fu, L.-M., Microfluidic mixing: A review (2011) Int. J. Mol. Sci., 12, pp. 3263-3287
Hartwell, S.K., Grudpan, K., Flow-based systems for rapid and high-precision enzyme kinetics studies (2012) J. Anal. Methods Chem., , doi: 10.1155/2012/450716
Bleul, R., Ritzi-Lehnert, M., Höth, J., Scharpfenecker, N., Frese, I., Düchs, D., Brunklaus, S., Drese, K.S., Compact, cost-efficient microfluidics-based stopped-flow device (2011) Anal. Bioanal. Chem., 399, pp. 1117-1125
Zhang, Y., Ozdemir, P., Microfluidic DNA amplification-A review (2009) Anal. Chim. Acta., 638, pp. 115-125
Shaw, K.J., Docker, P.T., Yelland, J.V., Dyer, C.E., Greenman, J., Greenwaya, G.M., Haswell, S.J., Rapid PCR amplification using a microfluidic device with integrated microwave heating and air impingement cooling (2010) Lab Chip, 10, pp. 1725-1728
Li, Y., Zhang, C., Xing, D., Integrated microfluidic reverse transcription-polymerase chain reaction for rapid detection of food-or waterborne pathogenic rotavirus (2011) Anal. Biochem., 415, pp. 87-96
Luna-Vera, F., Alvarez, J.C., Adsorption kinetics of proteins in plastic microfluidic channels: Real-time monitoring of lysozyme adsorption by pulsed streaming potentials Biosens (2010) Bioelectron., 25, pp. 1539-1543
Christensen, T.B., Pedersen, C.M., Gröndahl, K.G., Jensen, T.G., Sekulovic, A., Bang, D.D., Wolff, A., PCR biocompatibility of lab-on-a-chip and MEMS materials (2007) J. Micromech. Microeng., 17, pp. 1527-1532
Erill, I., Campoy, S., Erill, N., Barbe, J., Aguilo, J., Biochemical analysis and optimization of inhibition and adsorption phenomena in glass-silicon PCR-chips (2003) Sens. Actuator. B, 96, pp. 685-692
Felbel, J., Bieber, I., Pipper, J., Kohler, J.M., Investigations on the compatibility of chemically oxidized silicon (SiOx)-surfaces for applications towards chip-based polymerase chain reaction (2004) Chem. Eng. J., 101, pp. 333-338
Panaro, N.J., Lou, X.J., Fortina, P., Kricka, L.J., Wilding, P., Surface effects on PCR reactions in multichip microfluidic platforms (2004) Biomed. Microdevices, 6, pp. 75-80
Zanoli, L.M., Licciardello, M., D'Agata, R., Lantano, C., Calabretta, A., Corradini, R., Marchelli, R., Spoto, G., Peptide nucleic acid molecular beacons for the detection of PCR amplicons in droplet-based microfluidic devices (2012) Anal. Bioanal. Chem., , doi: 10.1007/s00216-011-5638-3
Christopher, G.F., Anna, S.L., Microfluidic methods for generating continuous droplet streams (2007) J. Phys. D Appl. Phys., 40, pp. R319-R336
Griffiths, A.D., Tawfik, D.S., Miniaturising the laboratory in emulsion droplets (2006) Trends Biotechnol., 24, pp. 395-402
Fair, R.B., Digital microfluidics: Is a true lab-on-a-chip possible? (2007) Microfluid. Nanofluid., 3, pp. 245-281
Zeng, Y., Novak, R., Shuga, J., Smith, M.T., Mathies, R.A., High-performance single cell genetic analysis using microfluidic emulsion generator arrays (2010) Anal. Chem., 82, pp. 3183-3190
Hua, Z., Rouse, J.L., Eckhardt, A.E., Srinivasan, V., Pamula, V.K., Schell, W.A., Benton, J.L., Pollack, M.G., Multiplexed real-time polymerase chain reaction on a digital microfluidic platform (2010) Anal. Chem., 82, pp. 2310-2316
Zhu, Z., Jenkins, G., Zhang, W., Zhang, M., Guan, Z., Yang, C.J., Single-molecule emulsion PCR in microfluidic droplets (2012) Anal. Bioanal. Chem., 403, pp. 2127-2143
Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., Hase, T., Loop-mediated isothermal amplification of DNA (2000) Nucleic Acids Res., p. 28. , doi: 101093/nar/28.12.e63
Curtis, K.A., Rudolph, D.L., Owen, S.M., Rapid detection of HIV-1 by reverse-transcription, loop-mediated isothermal amplification (RT-LAMP) (2008) J. Virol. Methods, 151, pp. 264-270
Hong, T.C., Mai, Q.L., Cuong, D.V., Development and evaluation of a novel loop-mediated isothermal amplification method for rapid detection of severe acute respiratory syndrome coronavirus (2004) J. Clin. Microbiol., 42, pp. 1956-1961
Misawa, Y., Yoshida, A., Saito, R., Yoshida, H., Okuzumi, K., Ito, N., Okada, M., Koike, K., Application of loop-mediated isothermal amplifi cation technique to rapid and direct detection of methicillin-resistant Staphylococcus aureus (MRSA) in blood cultures (2007) J. Infect. Chemother., 13, pp. 134-140
Ohtsuka, K., Yanagawa, K., Takatori, K., Hara-Kudo, Y., Detection of Salmonella enterica in naturally contaminated liquid eggs by loop-mediated isothermal amplification, and characterization of salmonella isolates (2005) Appl. Environ. Microbiol., 71, pp. 6730-6735
Liu, C., Mauk, M.G., Bau, H.H., A disposable, integrated loop-mediated isothermal amplification cassette with thermally actuated valves (2011) Microfluid. Nanofluid., 11, pp. 209-220
Yoshida, A., Nagashima, S., Ansai, T., Tachibana, M., Kato, H., Watari, H., Notomi, T., Takehara, T., Loop-mediated isothermal amplification method for rapid detection of the periodontopathic bacteria Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola (2005) J. Clin. Microbiol., 43, pp. 2418-2424
Mori, Y., Nagamine, K., Tomita, N., Notomi, T., Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation (2001) Biochem. Biophys. Res. Commun., 289, pp. 150-154
Nakamura, N., Fukuda, T., Nonen, S., Hashimoto, K., Azuma, J., Gemma, N., Simple and accurate determination of CYP2D6 gene copy number by a loop-mediated isothermal amplification method and an electrochemical DNA chip Clin (2010) Chim. Acta., 411, pp. 568-573
Iwamoto, T., Sonobe, T., Hayashi, K., Loop-mediated isothermal amplification for direct detection of mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples (2003) J. Clin. Microbiol., 41, pp. 2616-2622
Lee, S.Y., Lee, C.N., Holl, M., Meldrum, D.R., Lin, C.W., Efficient, specific, compact hepatitis B diagnostic device: Optical detection of the hepatitis B virus by isothermal amplification (2007) Sens. Actuator. B, 127, pp. 598-605
Hataoka, Y., Zhang, L.H., Mori, Y., Tomita, N., Notomi, T., Baba, Y., Analysis of specific gene by integration of isothermal amplification and electrophoresis on poly(methyl methacrylate) microchips (2004) Anal. Chem., 76, pp. 3689-3693
Fang, X., Liu, Y., Kong, J., Jiang, X., Loop-mediated isothermal amplification integrated on microfluidic chips for point-of-care quantitative detection of pathogens (2010) Anal. Chem., 82, pp. 3002-3006
Lam, L., Sakakihara, S., Ishizuka, K., Takeuchi, S., Arata, H.F., Fujita, H., Noji, H., Loop-mediated isothermal amplification of a single DNA molecule in polyacrylamide gel-based microchamber (2008) Biomed. Microdevices, 10, pp. 539-546
Safavieh, M., Ahmed, M.U., Tolba, M., Zourob, M., Microfluidic electrochemical assay for rapid detection and quantification of Escherichia coli (2012) Biosens. Bioelectron., 31, pp. 523-528
Nakamura, N., Ito, K., Takahashi, M., Hashimoto, K., Kawamoto, M., Yamanaka, M., Taniguchi, A., Gemma, N., Detection of six single-nucleotide polymorphisms associated with rheumatoid arthritis by a loop-mediated isothermal amplification method and an electrochemical DNA chip (2007) Anal. Chem., 79, pp. 9484-9493
Lee, T.M., Over-the-counter biosensors: Past, present, and future (2008) Sensors, 8, pp. 5535-5559
Abdel-Monem, M., Hoffmann-Berling, H., Enzymic unwinding of DNA 1: Purification and characterization of a DNA-dependent ATPase (1976) Escherichia coli. Eur. J. Biochem., 65, pp. 431-440
Abdel-Monem, M., Durwald, H., Hoffmann-Berling, H., Enzymic unwinding of DNA. 2. Chain separation by an ATP-dependent DNA unwinding enzyme. (1976) Eur. J. Biochem., 65, pp. 441-449
Vincent, M., Xu, Y., Kong, H., Helicase-dependent isothermal DNA amplification (2004) EMBO Rep., 5, pp. 795-800
Jeong, Y.-J., Park, K., Kim, D.-E., Isothermal DNA amplification in vitro: The helicase-dependent amplification system (2009) Cell. Mol. Life Sci., 66, pp. 3325-3336
Tuteja, N., Tuteja, R., Unraveling DNA helicases. Motif, structure, mechanism and function (2004) Eur. J. Biochem., 271, pp. 1849-1863
Jankowsky, E., RNA helicases at work: Binding and rearranging (2011) Trends Biochem. Sci., 36, pp. 19-29
Pyle, A.M., Translocation and unwinding mechanisms of RNA and DNA helicases (2008) Annu. Rev. Biophys., 37, pp. 317-336
Hall, M.C., Matson, S.W., Helicase motifs: The engine that powers DNA unwinding (1999) Mol. Microbiol., 34, pp. 867-877
Runyon, G.T., Lohman, T.M., Escherichia coli helicase II (uvrD) protein can completely unwind fully duplex linear and nicked circular DNA (1989) J. Biol. Chem., 264, pp. 17502-17512
Furukohri, A., Nishikawa, Y., Akiyama, M.T., Maki, H., Interaction between Escherichia coli DNA polymerase IV and single-stranded DNA-binding protein is required for DNA synthesis on SSB-coated DNA (2012) Nucleic Acids Res., 40, pp. 6039-6048
Shereda, R.D., Kozlov, A.G., Lohman, T.M., Cox, M.M., Keck, J.L., SSB as an organizer/mobilizer of genome maintenance complexes (2008) Crit. Rev. Biochem. Mol. Biol., 43, pp. 289-318
Mechanic, L.E., Frankel, B.A., Matson, S.W., Escherichia coli MutL loads DNA helicase II onto DNA (2000) J. Biol. Chem., 275, pp. 38337-38346
Matson, S.W., Robertson, A.B., The UvrD helicase and its modulation by the mismatch repair protein MutL (2006) Nucleic Acids Res., 34, pp. 4089-4097
An, L., Tang, W., Ranalli, T.A., Kim, H.J., Wytiaz, J., Kong, H., Characterization of a thermostable UvrD helicase and its participation in helicase-dependent amplification (2005) J. Biol. Chem., 280, pp. 28952-28958
Goldmeyer, J., Kong, H., Tang, W., Development of a novel one-tube isothermal reverse transcription thermophilic helicase-dependent amplification platform for rapid RNA detection (2007) J. Mol. Diagn., 9, pp. 639-644
Tong, Y., Tang, W., Kim, H.J., Pan, X., Ranalli, T., Kong, H., Development of isothermal TaqMan assays for detection of biothreat organisms (2008) Biotechniques, 45, pp. 543-557
Andresen, D., von Nickisch-Rosenegk, M., Bier, F.F., Helicase dependent on chip-amplification and its use in multiplex pathogen detection (2009) Clin. Chim. Acta., 403, pp. 244-248
http://www.biohelix.com/, IsoAmp II tHDA Kit
Biohelix Corporation: Beverly, MA, USA. Available online, (accessed on 7 November 2012)Ramalingam, N., San, T.C., Kai, T.J., Mak, M.Y.M., Gong, H.-Q., Microfluidic devices harboring unsealed reactors for real-time isothermal helicase-dependent amplification (2009) Microfluid. Nanofluid., 7, pp. 325-336
Tong, Y., Lemieux, B., Kong, H., Multiple strategies to improve sensitivity, speed and robustness of isothermal nucleic acid amplification for rapid pathogen detection (2011) BMC Biotechnol., p. 11. , doi: 101186/1472-6750-11-50
Mahalanabis, M., Do, J., AlMuayad, H., Zhang, J.Y., Klapperich, C.M., An integrated disposable device for DNA extraction and helicase dependent amplification (2010) Biomed. Microdevices, 12, pp. 353-359
Baner, J., Nilsson, M., Mendel-Hartvig, M., Landergren, U., Signal amplification of padlock probes by rolling circle replication (1998) Nucl. Acids Res., 26, pp. 5073-5078
Mothershed, E.A., Whitney, A.M., Nucleic acid-based methods for the detection of bacterial pathogens: Present and future considerations for the clinical laboratory (2006) Clin. Chim. Acta., 363, pp. 206-220
Nilsson, M., Malmgren, H., Samiotaki, M., Kwiatkowski, M., Chowdhary, B.P., Landegren, U., Padlock probes: Circularizing oligonucleotides for localized DNA detection (1994) Science, 265, pp. 2085-2088
Lizardi, P.M., Huang, X.H., Zhu, Z.R., Bray-Ward, P., Thomas, D.C., Ward, D.C., Mutation detection and single-molecule counting using isothermal rolling-circle amplification (1998) Nat. Genet., 19, pp. 225-232
Jarvius, J., Melin, J., Göransson, J., Stenberg, J., Fredriksson, S., Gonzalez-Rey, C., Bertilsson, S., Nilsson, M., Digital quantification using amplified single-molecule detection (2006) Nat. Mater., 3, pp. 725-727
Melin, J., Jarvius, J., Gransson, J., Nilsson, M., Homogeneous amplified single-molecule detection: Characterization of key parameters (2007) Anal. Biochem., 368, pp. 230-238
Johne, R., Mueller, H., Rector, A., van Ranst, M., Stevens, H., Rolling-circle amplification of viral DNA genomes using phi29 polymerase (2009) Trends Microbiol., 17, pp. 205-211
Hutchison, C.A., Smith, H.O., Pfannkoch, C., Venter, J.C., Cell-free cloning using phi29 DNA polymerase (2005) Proc. Natl. Acad. Sci., 102, pp. 17332-17336
Mahmoudian, L., Kaji, N., Tokeshi, M., Nilsson, M., Baba, Y., Rolling circle amplification and circle-to-circle amplification of a specific gene integrated with electrophoretic analysis on a single chip (2008) Anal. Chem., 80, pp. 2483-2490
Dahl, F., Baner, J., Gullberg, M., Mendel-Hartvig, M., Landegren, U., Nilsson, M., Circle-to-circle amplification for precise and sensitive DNA analysis (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 4548-4553
Mahmoudian, L., Melin, J., Mohamadi, M.R., Yamada, K., Ohta, M., Kaji, N., Tokeshi, M., Baba, Y., Microchip electrophoresis for specific gene detection of the pathogenic bacteria V (2008) cholerae by circle-to-circle amplification. Anal. Sci., 24, pp. 327-332
Mazutis, L., Araghi, A.F., Miller, O.J., Baret, J.C., Frenz, L., Janoshazi, A., Taly, V., Ryckelynck, M., Droplet-based microfluidic systems for high-throughput single dna molecule isothermal amplification and analysis (2009) Anal. Chem., 81, pp. 4813-4821
Juul, S., Nielsen, C.J., Labouriau, R., Roy, A., Tesauro, C., Jensen, P.W., Harmsen, C., Knudsen, B.R., Droplet microfluidics platform for highly sensitive and quantitative detection of malaria-causing plasmodium parasites based on enzyme activity measurement (2012) ACS Nano, , doi: 10.1021/nn3038594
Dean, F.B., Hosono, S., Fang, L., Wu, X., Faruqi, A.F., Bray-Ward, P., Sun, Z., Lasken, R.S., Comprehensive human genome amplification using multiple displacement amplification (2002) Proc. Natl. Acad. Sci., 99, pp. 5261-5266
Blanco, L., Bernad, A., Lazaro, J.M., Martin, G., Garmendia, C., Salas, M., Highly efficient DNA synthesis by the phage phi 29 DNA polymerase, Symmetrical mode of DNA replication. (1989) J. Biol. Chem., 264, pp. 8935-8940
Nelson, J.R., Cai, Y.C., Giesler, T.L., Farchaus, J.W., Sundaram, S.T., Ortiz-Rivera, M., Hosta, L.P., Fuller, C.W., TempliPhi, phi29 DNA polymerase based rolling circle amplification of templates for DNA sequencing (2002) Biotechniques, 32, pp. S44-S47
Ling, L.L., Keohavong, P., Dias, C., Thilly, W.G., Optimization of the polymerase chain reaction with regard to fidelity: Modified T7, Taq, and vent DNA polymerases (1991) Genome Res., 1, pp. 63-69
Keohavong, P., Thilly, W.G., Fidelity of DNA polymerases in DNA amplification (1989) Proc. Natl. Acad. Sci., 86, pp. 9253-9257
Hosono, S., Faruqi, A.F., Dean, F.B., Du, Y., Sun, Z., Wu, X., Du, J., Lasken, R.S., Unbiased whole genome amplification directly from clinical samples (2003) Genome Res., 13, pp. 954-964
Raghunathan, A., Ferguson Jr., H.R., Bornarth, C.J., Song, W., Driscoll, M., Lasken, R.S., Genomic DNA amplification from a single bacterium (2005) Appl. Environ. Microbiol., 71, pp. 3342-3347
Marcy, Y., Ishoey, T., Lasken, R.S., Stockwell, T.B., Walenz, B.P., Halpern, A.L., Beeson, K.Y., Quake, S.R., Nanoliter reactors improve multiple displacement amplification of genomes from single cells (2007) PloS Genet., p. 3. , doi: 101371/journal.pgen.0030155
Piepenburg, O., Williams, C.H., Stemple, D.L., Armes, N.A., DNA detection using recombination proteins (2006) PloS Biol., p. 4. , doi: 101371/journal.pbio.0040204
Lutz, S., Weber, P., Focke, M., Faltin, B., Hoffmann, J., Müller, C., Mark, D., von Stetten, F., Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA) (2010) Lab Chip, 10, pp. 887-893
Hakenberg, S., Hügle, M., Weidmann, M., Hufert, F., Dame, G., Urban, G.A., A phaseguided passive batch microfluidic mixing chamber for isothermal amplification (2012) Lab Chip, 12, pp. 4576-4580
Vulto, P., Podszun, S., Meyer, P., Hermann, C., Manz, A., Urban, G.A., Phaseguides: A paradigm shift in microfluidic priming and emptying (2011) Lab Chip, 11, pp. 1596-1602
Paul, N., Shum, J., Le, T., Hot start PCR (2010) Methods Mol. Biol., 630, pp. 301-318
Shen, F., Davydova, E.K., Du, W., Kreutz, J.E., Piepenburg, O., Ismagilov, R.F., Digital isothermal quantification of nucleic acids via simultaneous chemical initiation of recombinase polymerase amplification reactions on SlipChip (2011) Anal. Chem., 83, pp. 3533-3540
Deiman, B., van Aarle, P., Sillekens, P., Characteristics and applications of nucleic acid sequence-based amplification (NASBA) (2002) Mol. Biotechnol., 20, pp. 163-179
Yates, S., Penning, M., Goudsmit, J., Frantzen, I., van de Weijer, B., van Strijp, D., van Gemen, B., Quantitative detection of hepatitis B virus DNA by real-time nucleic acid sequence-based amplification with molecular beacon detection (2001) J. Clin. Microbiol., 39, pp. 3656-3665
van Gemen, B., van Beuningen, R., Nabbe, A., van Strijp, D., Jurriaans, S., Lens, P., Kievits, T., A one-tube quantitative HIV-1 RNA NASBA nucleic acid amplification assay using electrochemiluminiscent (ECL) labelled probes (1994) J. Virol. Methods, 49, pp. 157-168
Shan, S., Ko, L.S., Collins, R.A., Wu, Z., Chen, J., Chan, K.Y., Xing, J., Yu, A.C., Comparison of nucleic acid-based detection of avian influenza H5N1 with virus isolation (2003) Biochem. Biophys. Res. Commun., 302, pp. 377-383
Connelly, J.T., Nugen, S.R., Borejsza-Wysocki, W., Durst, R.A., Montagna, R.A., Baeumner, A.J., Human pathogenic Cryptosporidium species bioanalytical detection method with single oocyst detection capability (2008) Anal. Bioanal. Chem., 391, pp. 487-495
Nugen, S.R., Asiello, P.J., Connelly, J.T., Baeumner, A.J., PMMA biosensor for nucleic acids with integrated mixer and electrochemical detection (2009) Biosens. Bioelectron., 24, pp. 2428-2433
Wang, Y., Li, J., Jin, J., Wang, H., Tang, H., Yang, R., Wang, K., Strategy for molecular beacon binding readout: Separating molecular recognition element and signal reporter (2009) Anal. Chem., 81, pp. 9703-9709
Wang, K., Tang, Z., Yang, C.J., Kim, Y., Fang, X., Li, W., Wu, Y., Tan, W., Molecular engineering of DNA: Molecular beacons (2009) Angew. Chem. Int. Edit., 48, pp. 856-870
Gore, H.M., Wakeman, C.A., Hull, R.M., McKillip, J.L., Real-time molecular beacon NASBA reveals hblc expression from Bacillus spp (2003) in milk. Biochem. Biophys. Res. Commun., 311, pp. 386-390
Nadal, A., Coll, A., Cook, N., Pla, M., A molecular beacon-based real time NASBA assay for detection of Listeria monocytogenes in food products: Role of target mRNA secondary structure on NASBA design (2007) J. Microbiol. Methods, 68, pp. 623-632
Gulliksen, A., Solli, L., Karlsen, F., Rogne, H., Hovig, E., Nordstrom, T., Sirevag, R., Real-time nucleic acid sequence-based amplification in nanoliter volumes (2004) Anal. Chem., 76, pp. 9-14
Gulliksen, A., Keegan, H., Martin, C., O'Leary, J., Solli, L.A., Falang, I.M., Grønn, P., Furuberg, L., Towards a "sample-in, answer-out" point-of-care platformfor nucleic acid extraction and amplification: Using an HPV E6/E7mRNAModel System (2012) J. Oncol., , doi:10.1155/2012/905024
Zhao, X., Dong, T., Yang, Z., Pires, N., Hoivik, N., Compatible immuno-NASBA LOC device for quantitative detection of waterborne pathogens: Design and validation (2012) Lab Chip, 12, pp. 602-612
Isothermal amplification methods for the detection of nucleic acids in microfluidic devices
Diagnostic tools for biomolecular detection need to fulfill specific requirements in terms of sensitivity, selectivity and high-throughput in order to widen their applicability and to minimize the cost of the assay. The nucleic acid amplification is a key step in DNA detection assays. It contributes to improving the assay sensitivity by enabling the detection of a limited number of target molecules. The use of microfluidic devices to miniaturize amplification protocols reduces the required sample volume and the analysis times and offers new possibilities for the process automation and integration in one single device. The vast majority of miniaturized systems for nucleic acid analysis exploit the polymerase chain reaction (PCR) amplification method, which requires repeated cycles of three or two temperature-dependent steps during the amplification of the nucleic acid target sequence. In contrast, low temperature isothermal amplification methods have no need for thermal cycling thus requiring simplified microfluidic device features. Here, the use of miniaturized analysis systems using isothermal amplification reactions for the nucleic acid amplification will be discussed.
Isothermal amplification methods for the detection of nucleic acids in microfluidic devices
Chattopadhyay A, Cogdell R, Crespo-hernandez CE, Datta A, De A, Haacke S, Hariharan M, Helliwell J, Hughes A, Improta R, Jones M, Joseph J, Karsili T, Kohler B, Krishnan R, Kuriakose A, L , M , Markovitsi D, Medhi H, Periyasamy G, Pradeepkumar PI, Roy Chowdhury P, Sarangi M, Schapiro I, Schertler GFX, Schlichting I, Segarra-marti J, Swaminathan R, V , V , Van Grondelle R, Venkatraman RK, Venkatramani R, Watts A * Light induced charge and energy transport in nucleic acids and proteins: general discussion(230 views) Faraday Discuss (ISSN: 1359-6640print, 1359-6640linking), 2018 Apr 1; 207: 153-180. Impact Factor:4.194 ViewExport to BibTeXExport to EndNote
Chandra A, Cogdell R, Crespo-hernandez CE, Datta A, Giussani A, Haacke S, Helliwell J, Improta R, Jayasree RS, Jones M, Karsili T, Kohler B, L , M , Mandal I, Markovitsi D, Medhi H, Mishra PP, Pradeepkumar PI, Roy Chowdhury P, Sarangi M, Schapiro I, Schlichting I, Segarra-marti J, Sharma A, V , V , Van Grondelle R, Watts A * Light induced damage and repair in nucleic acids and proteins: general discussion(179 views) Faraday Discuss (ISSN: 1359-6640print, 1359-6640linking), 2018 Apr 1; 207: 389-408. Impact Factor:4.194 ViewExport to BibTeXExport to EndNote
Bhat V, Cogdell R, Crespo-hernández CE, Datta A, De A, Haacke S, Helliwell J, Improta R, Joseph J, Karsili T, Kohler B, Krishnan R, Mahil LM, Lewis F, Mandal I, Markovitsi D, Mishra PP, Paul S, Periyasamy G, Pradeepkumar PI, Roy Chowdhury P, Sarangi M, Sasikumar D, Schapiro I, Schertler GFX, Schlichting I, Segarra-martí J, Swaminathan R, Vishnu V, Van Grondelle R, Varghese R, Venkatramani R * Photocrosslinking between nucleic acids and proteins: general discussion(182 views) Faraday Discussions, 2018; N/D: N/D-N/D. Impact Factor:3.427 ViewExport to BibTeXExport to EndNote