Istituto di Chimica Biomolecolare, CNR, Pozzuoli, Italy. Electronic address: giuseppina.andreotti@icb.cnr.it.
Istituto di Genetica e Biofisica 'A. Buzzati Traverso,' CNR, Napoli, Italy. Electronic address: v_citro@libero.it.
Dipartimento di Biologia, Universita Federico II, Napoli, Italy. Electronic address: correraantonella@gmail.com.
Istituto di Biostrutture e Bioimmagini, CNR, Napoli, Italy. Electronic address: cubellis@unina.it.
References: Yue, P., Li, Z., Moult, J., Loss of protein structure stability as a major causative factor in monogenic disease (2005) Journal of Molecular Biology, 353 (2), pp. 459-473. , DOI 10.1016/j.jmb.2005.08.020, PII S002228360500957
Boyd, R.E., Lee, G., Rybczynski, P., Benjamin, E.R., Khanna, R., Wustman, B.A., Valenzano, K.J., Pharmacological chaperones as therapeutics for lysosomal storage diseases (2013) J. Med. Chem., 56, pp. 2705-2725
Ishii, S., Pharmacological chaperone therapy for Fabry disease (2012) Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., 88, pp. 18-30
Young-Gqamana, B., Brignol, N., Chang, H.H., Khanna, R., Soska, R., Fuller, M., Sitaraman, S.A., Benjamin, E.R., Migalastat HCl reduces globotriaosylsphingosine (lyso-Gb3) in Fabry transgenic mice and in the plasma of Fabry patients (2013) PLoS One, 8, p. 57631
Benito, J.M., Garcia Fernandez, J.M., Ortiz Mellet, C., Pharmacological chaperone therapy for Gaucher disease: A patent review (2011) Expert. Opin. Ther. Pat., 21, pp. 885-903
Khanna, R., Benjamin, E.R., Pellegrino, L., Schilling, A., Rigat, B.A., Soska, R., Nafar, H., Valenzano, K.J., The pharmacological chaperone isofagomine increases the activity of the Gaucher disease L444P mutant form of beta-glucosidase (2010) FEBS J., 277, pp. 1618-1638
Flanagan, J.J., Rossi, B., Tang, K., Wu, X., Mascioli, K., Donaudy, F., Tuzzi, M.R., Do, H.V., The pharmacological chaperone 1-deoxynojirimycin increases the activity and lysosomal trafficking of multiple mutant forms of acid alpha-glucosidase (2009) Hum. Mutat., 30, pp. 1683-1692
Khanna, R., Flanagan, J.J., Feng, J., Soska, R., Frascella, M., Pellegrino, L.J., Lun, Y., Valenzano, K.J., The pharmacological chaperone AT2220 increases recombinant human acid alpha-glucosidase uptake and glycogen reduction in a mouse model of Pompe disease (2012) PLoS One, 7, p. 40776
Santos-Sierra, S., Kirchmair, J., Perna, A.M., Reiss, D., Kemter, K., Roschinger, W., Glossmann, H., Lagler, F.B., Novel pharmacological chaperones that correct phenylketonuria in mice (2012) Hum. Mol. Genet., 21, pp. 1877-1887
Germain, D.P., Fabry disease (2010) Orphanet J. Rare Dis., 5, p. 30
Deegan, P.B., Fabry disease, enzyme replacement therapy and the significance of antibody responses (2012) J. Inherit. Metab. Dis., 35, pp. 227-243
Germain, D.P., Giugliani, R., Hughes, D.A., Mehta, A., Nicholls, K., Barisoni, L., Jennette, C.J., Boudes, P.F., Safety and pharmacodynamic effects of a pharmacological chaperone on alpha-galactosidase A activity and globotriaosylceramide clearance in Fabry disease: Report from two phase 2 clinical studies (2012) Orphanet J. Rare Dis., 7, p. 91
Andreotti, G., Guarracino, M.R., Cammisa, M., Correra, A., Cubellis, M.V., Prediction of the responsiveness to pharmacological chaperones: Lysosomal human alpha-galactosidase, a case of study (2010) Orphanet J. Rare Dis., 5, p. 36
Siekierska, A., De Baets, G., Reumers, J., Gallardo, R., Rudyak, S., Broersen, K., Couceiro, J., Rousseau, F., Alpha-Galactosidase aggregation is a determinant of pharmacological chaperone efficacy on Fabry disease mutants (2012) J. Biol. Chem., 287, pp. 28386-28397
Yam, G.H., Bosshard, N., Zuber, C., Steinmann, B., Roth, J., Pharmacological chaperone corrects lysosomal storage in Fabry disease caused by trafficking-incompetent variants (2006) Am. J. Physiol. Cell Physiol., 290, pp. 1076-C1082
Ishii, S., Chang, H.-H., Kawasaki, K., Yasuda, K., Wu, H.-L., Garman, S.C., Fan, J.-Q., Mutant α-galactosidase A enzymes identified in Fabry disease patients with residual enzyme activity: Biochemical characterization and restoration of normal intracellular processing by 1-deoxygalactonojirimycin (2007) Biochemical Journal, 406 (2), pp. 285-295. , DOI 10.1042/BJ20070479
Shin, S.H., Kluepfel-Stahl, S., Cooney, A.M., Kaneski, C.R., Quirk, J.M., Schiffmann, R., Brady, R.O., Murray, G.J., Prediction of response of mutated alpha-galactosidase A to a pharmacological chaperone (2008) Pharmacogenet. Genomics, 18, pp. 773-780
Benjamin, E.R., Flanagan, J.J., Schilling, A., Chang, H.H., Agarwal, L., Katz, E., Wu, X., Valenzano, K.J., The pharmacological chaperone 1-deoxygalactonojirimycin increases alpha-galactosidase A levels in Fabry patient cell lines (2009) J. Inherit. Metab. Dis., 32, pp. 424-440
Filoni, C., Caciotti, A., Carraresi, L., Cavicchi, C., Parini, R., Antuzzi, D., Zampetti, A., Morrone, A., Functional studies of new GLA gene mutations leading to conformational Fabry disease (2010) Biochim. Biophys. Acta, 1802, pp. 247-252
Fan, J.-Q., Ishii, S., Active-site-specific chaperone therapy for Fabry disease: Yin and Yang of enzyme inhibitors (2007) FEBS Journal, 274 (19), pp. 4962-4971. , DOI 10.1111/j.1742-4658.2007.06041.x
Spada, M., Pagliardini, S., Yasuda, M., Tukel, T., Thiagarajan, G., Sakuraba, H., Ponzone, A., Desnick, R.J., High incidence of later-onset Fabry disease revealed by newborn screening (2006) American Journal of Human Genetics, 79 (1), pp. 31-40. , DOI 10.1086/504601
Shimotori, M., Maruyama, H., Nakamura, G., Suyama, T., Sakamoto, F., Itoh, M., Miyabayashi, S., Gejyo, F., Novel mutations of the GLA gene in Japanese patients with Fabry disease and their functional characterization by active site specific chaperone (2008) Hum. Mutat., 29, p. 331
Kim, M.S., Song, J., Park, C., Determining protein stability in cell lysates by pulse proteolysis and Western blotting (2009) Protein Sci., 18, pp. 1051-1059
Ferri, L., Guido, C., La Marca, G., Malvagia, S., Cavicchi, C., Fiumara, A., Barone, R., Morrone, A., Fabry disease: Polymorphic haplotypes and a novel missense mutation in the GLA gene (2011) Clin. Genet., 81, pp. 224-233
Andreotti, G., Citro, V., De Crescenzo, A., Orlando, P., Cammisa, M., Correra, A., Cubellis, M.V., Therapy of Fabry disease with pharmacological chaperones: From in silico predictions to in vitro tests (2011) Orphanet J. Rare Dis., 6, p. 66
Lieberman, R.L., Aquino, A.D., Ringe, J.D., Petsko, G.A., Effects of pH and iminosugar pharmacological chaperones on lysosomal glycosidase structure and stability (2009) Biochemistry, 48, pp. 4816-4827
Pace, C.N., Marshall, Jr.H.F., A comparison of the effectiveness of protein denaturants for beta-lactoglobulin and ribonuclease (1980) Arch. Biochem. Biophys., 199, pp. 270-276
Guce, A.I., Clark, N.E., Rogich, J.J., Garman, S.C., The molecular basis of pharmacological chaperoning in human alpha-galactosidase (2011) Chem. Biol., 18, pp. 1521-1526
Shabbeer, J., Robinson, M., Desnick, R.J., Detection of α-galactosidase A mutations causing fabry disease by denaturing high performance liquid chromatography (2005) Human Mutation, 25 (3), pp. 299-305. , DOI 10.1002/humu.20144
Dobrovolny, R., Dvorakova, L., Ledvinova, J., Magage, S., Bultas, J., Lubanda, J.C., Elleder, M., Hrebicek, M., Relationship between X-inactivation and clinical involvement in Fabry heterozygotes. Eleven novel mutations in the α-galactosidase a gene in the Czech and Slovak population (2005) Journal of Molecular Medicine, 83 (8), pp. 647-654. , DOI 10.1007/s00109-005-0656-2
Topaloglu, A.K., Ashley, G.A., Tong, B., Shabbeer, J., Astrin, K.H., Eng, C.M., Desnick, R.J., Twenty novel mutations in the α-galactosidase a gene causing fabry disease (1999) Molecular Medicine, 5 (12), pp. 806-811
Ashley, G.A., Shabbeer, J., Yasuda, M., Eng, C.M., Desnick, R.J., Fabry disease: Twenty novel α-galactosidase a mutations causing the classical phenotype (2001) Journal of Human Genetics, 46 (4), pp. 192-196. , DOI 10.1007/s100380170088
Giugliani, R., Waldek, S., Germain, D.P., Nicholls, K., Bichet, D.G., Simosky, J.K., Bragat, A.C., Boudes, P.F., A Phase 2 study of migalastat hydrochloride in females with Fabry disease: Selection of population, safety and pharmacodynamic effects (2013) Mol. Genet. Metab., 109, pp. 86-92
Wu, X., Katz, E., Della Valle, M.C., Mascioli, K., Flanagan, J.J., Castelli, J.P., Schiffmann, R., Benjamin, E.R., A pharmacogenetic approach to identify mutant forms of alpha-galactosidase A that respond to a pharmacological chaperone for Fabry disease (2011) Hum. Mutat., 32, pp. 965-977
Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685
A thermodynamic assay to test pharmacological chaperones for Fabry disease
Background: The majority of the disease-causing mutations affect protein stability, but not functional sites and are amenable, in principle, to be treated with pharmacological chaperones. These drugs enhance the thermodynamic stability of their targets. Fabry disease, a disorder caused by mutations in the gene encoding lysosomal alpha-galactosidase, represents an excellent model system to develop experimental protocols to test the efficiency of such drugs. Methods: The stability of lysosomal alpha-galactosidase under different conditions was studied by urea-induced unfolding followed by limited proteolysis and Western blotting. Results: We measured the concentration of urea needed to obtain half-maximal unfolding because this parameter represents an objective indicator of protein stability. Conclusions: Urea-induced unfolding is a versatile technique that can be adapted to cell extracts containing tiny amounts of wild-type or mutant proteins. It allows testing of protein stability as a function of pH, in the presence or in the absence of drugs. Results are not influenced by the method used to express the protein in transfected cells. General significance: Scarce and dispersed populations pose a problem for the clinical trial of drugs for rare diseases. This is particularly true for pharmacological chaperones that must be tested on each mutation associated with a given disease. Diverse in vitro tests are needed. We used a method based on chemically induced unfolding as a tool to assess whether a particular Fabry mutation is responsive to pharmacological chaperones, but, by no means is our protocol limited to this disease. (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved.
A thermodynamic assay to test pharmacological chaperones for Fabry disease