Molecular basis of the PED/PEA15 interaction with the C-terminal fragment of phospholipase D1 revealed by NMR spectroscopy(467 views) Farina B, Doti N, Pirone L, Malgieri G, Pedone E, Ruvo M, Fattorusso R
Keywords: Chemical Shift Perturbation, Death Domain, Ped Pea15 Protein, Protein-Protein Interaction, D4 Alpha Protein, Phospholipase D1, Phosphoprotein, Phosphoprotein Enriched In Astrocyte 15, Phosphoprotein Enriched In Diabetes, Protein Kinase C Alpha, Synthetic Peptide, Unclassified Drug, Human, Peptide Fragment, Signal Peptide, Allosterism, Article, Binding Site, Controlled Study, Enzyme Activity, Enzyme Linked Immunosorbent Assay, Nuclear Magnetic Resonance Spectroscopy, Priority Journal, Protein Analysis, Protein Binding, Protein Expression, Protein Protein Interaction, Chemistry, Metabolism, Protein Conformation, Enzyme-Linked Immunosorbent Assay, Intracellular Signaling Peptides And Proteins, Intracellular Signaling Peptides And Proteins Chemistry Metabolism, Peptide Fragments Chemistry Metabolism, Phospholipase D Chemistry Metabolism, Phosphoproteins Chemistry Metabolism,
Affiliations: *** IBB - CNR ***
Istituto di Biostrutture e Bioimmagini, CNR, Napoli, Italy
Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, via Vivaldi 43, 81100
References: Araujo, H., Danziger, N., Cordier, J., Glowinski, J., Chneiweiss, H., Characterization of PEA-15, a major substrate for protein kinase C in astrocytes (1993) Journal of Biological Chemistry, 268 (8), pp. 5911-592
Estelles, A., Yokoyama, M., Nothias, F., Vincent, J.-D., Glowinski, J., Vernier, P., Chneiweiss, H., The major astrocytic phosphoprotein PEA-15 is encoded by two mRNAs conserved on their full length in mouse and human (1996) Journal of Biological Chemistry, 271 (25), pp. 14800-14806. , DOI 10.1074/jbc.271.25.14800
Hill, J.M., Vaidyanathan, H., Ramos, J.W., Ginsberg, M.H., Werner, M.H., Recognition of ERK MAP kinase by PEA-15 reveals a common docking site within the death domain and death effector domain (2002) EMBO Journal, 21 (23), pp. 6494-6504. , DOI 10.1093/emboj/cdf641
Twomey, E.C., Wei, Y., High-definition NMR structure of PED/PEA-15 death effector domain reveals details of key polar side chain interactions (2012) Biochem. Biophys. Res. Commun., 424, pp. 141-146
Fiory, F., Formisano, P., Perruolo, G., Beguinot, F., Frontiers: PED/PEA-15, a multifunctional protein controlling cell survival and glucose metabolism (2009) Am. J. Physiol. Endocrinol. Metab., 297, pp. 592-601
Condorelli, G., Vigliotta, G., Iavarone, C., Caruso, M., Tocchetti, C.G., Andreozzi, F., Cafieri, A., Beguinot, F., PED/PEA-15 gene controls glucose transport and is overexpressed in type 2 diabetes mellitus (1998) EMBO Journal, 17 (14), pp. 3858-3866. , DOI 10.1093/emboj/17.14.3858
Valentino, R., Lupoli, G.A., Raciti, G.A., Oriente, F., Farinaro, E., Della Valle, E., Salomone, M., Beguinot, F., The PEA15 gene is overexpressed and related to insulin resistance in healthy first-degree relatives of patients with type 2 diabetes (2006) Diabetologia, 49 (12), pp. 3058-3066. , DOI 10.1007/s00125-006-0455-5
Ungaro, P., Teperino, R., Mirra, P., Cassese, A., Fiory, F., Perruolo, G., Miele, C., Beguinot, F., Molecular cloning and characterization of the human PED/PEA-15 gene promoter reveals antagonistic regulation by HNF-4alpha and COUP-TFII (2008) J. Biol. Chem., 283, pp. 30970-30979
Vigliotta, G., Miele, C., Santopietro, S., Portella, G., Perfetti, A., Maitan, M.A., Cassese, A., Beguinot, F., Overexpression of the ped/pea-15 gene causes diabetes by impairing glucose-stimulated insulin secretion in addition to insulin action (2004) Molecular and Cellular Biology, 24 (11), pp. 5005-5015. , DOI 10.1128/MCB.24.11.5005-5015.2004
Miele, C., Raciti, G.A., Cassese, A., Romano, C., Giacco, F., Oriente, F., Paturzo, F., Beguinot, F., PED/PEA-15 regulates glucose-induced insulin secretion by restraining potassium channel expression in pancreatic beta-cells (2007) Diabetes, 56 (3), pp. 622-633. , http://diabetes.diabetesjournals.org/cgi/reprint/56/3/622.pdf, DOI 10.2337/db06-1260
Zhang, Y., Redina, O., Altshuller, Y.M., Yamazaki, M., Ramos, J., Chneiweiss, H., Kanaho, Y., Frohman, M.A., Regulation of expression of phospholipase D1 and D2 by PEA-15, a novel protein that interacts with them (2000) J. Biol. Chem., 275, pp. 35224-35232
Viparelli, F., Cassese, A., Doti, N., Paturzo, F., Marasco, D., Dathan, N.A., Monti, S.M., Ruvo, M., Targeting of PED/PEA-15 molecular interaction with phospholipase D1 enhances insulin sensitivity in skeletal muscle cells (2008) J. Biol. Chem., 283, pp. 21769-21778
Doti, N., Cassese, A., Marasco, D., Paturzo, F., Sabatella, M., Viparelli, F., Dathan, N., Ruvo, M., Residues 762-801 of PLD1 mediate the interaction with PED/PEA15 (2010) Mol. Biosyst., 6, pp. 2039-2048
Mayer, M., Meyer, B., Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor (2001) Journal of the American Chemical Society, 123 (25), pp. 6108-6117. , DOI 10.1021/ja0100120
Farina, B., Pirone, L., Russo, L., Viparelli, F., Doti, N., Pedone, C., Pedone, E.M., Fattorusso, R., NMR backbone dynamics studies of human PED/PEA-15 outline protein functional sites (2010) FEBS J., 277, pp. 4229-4240
Fields, G.B., Noble, R.L., Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids (1990) International Journal of Peptide and Protein Research, 35 (3), pp. 161-214
Pace, C.N., Vajdos, F., Fee, L., Grimsley, G., Gray, T., How to measure and predict the molar absorption coefficient of a protein (1995) Protein Sci., 4, pp. 2411-2423
Stan Tsai, C., (2007) Biomacromolecules: Introduction to Structure, Function and Informatics, pp. 183-209. , J. Wiley and sons, Hoboken, NJ
Marion, D., Ikura, M., Tschudin, R., Bax, A., Rapid recording of 2D NMR spectra without phase-cycling. Application to the study of hydrogen exchange in proteins (1989) J. Magn. Reson., 85, pp. 393-399
Piotto, M., Saudek, V., Sklenar, V., Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions (1992) J. Biomol. NMR, 2, pp. 661-665
Sklenar, V., Piotto, M., Leppik, R., Saudek, V., Gradient-tailored water suppression for 1H-15N HSQC experiments optimized to retain full sensitivity (1993) J. Magn. Reson. A, 102, pp. 241-245
Braunschweiler, L., Ernst, R.R., Coherence transfer by isotropic mixing: Application to proton correlation spectroscopy (1983) J. Magn. Reson., 53, pp. 521-528
Anil-Kumar, R.R., Wüthrich Ernst, K., A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules (1980) Biochem. Biophys. Res. Commun., 95, pp. 1-6
Hwang, T.L., Shaka, A.J., Water suppression that works: Excitation sculpting using arbitrary wave-forms and pulsed-field gradients (1995) J. Magn. Reson. A, 112, pp. 275-279
Dalvit, C., Efficient multiple-solvent suppression for the study of the interactions of organic solvents with biomolecules (1998) Journal of Biomolecular NMR, 11 (4), pp. 437-444
(2012) ACD/NMR Processor Freeware, , www.acdlabs.com, Version 12.01, Advanced Chemistry Development, Inc., Toronto, ON, Canada
Gunasekaran, K., Ma, B., Nussinov, R., Is allostery an intrinsic property of all dynamic proteins? (2004) Proteins: Structure, Function and Genetics, 57 (3), pp. 433-443. , DOI 10.1002/prot.20232
Niu, X., Chen, Q., Zhang, J., Shen, W., Shi, Y., Wu, J., Interesting structural and dynamical behaviors exhibited by the AF-6 PDZ domain upon Bcr peptide binding (2007) Biochemistry, 46 (51), pp. 15042-15053. , DOI 10.1021/bi701303p
Twomey, E.C., Cordasco, D.F., Wei, Y., Profound conformational changes of PED/PEA-15 in ERK2 complex revealed by NMR backbone dynamics (2012) BBA Prot. and Proteomics, 1824, pp. 1382-1393
Kersse, K., Verspurten, J., VandenBerghe, T., Vandenabeele, P., The death-fold superfamily of homotypic interaction motifs (2011) Trends Biochem. Sci., 36, pp. 541-552
Li, F.Y., Jeffrey, P.D., Yu, J.W., Shi, Y., Crystal structure of MC159 reveals molecular mechanism of DISC assembly and FLIP inhibition (2006) J. Biol. Chem., 281, pp. 2960-2968
Yang, J.K., Wang, L., Zheng, L., Wan, F., Ahmed, M., Lenardo, M.J., Wu, H., Crystal structure of MC159 reveals molecular mechanism of DISC assembly and FLIP inhibition (2005) Molecular Cell, 20 (6), pp. 939-949. , DOI 10.1016/j.molcel.2005.10.023, PII S1097276505017181
Bagneris, C., Ageichik, A.V., Cronin, N., Wallace, B., Collins, M., Boshoff, C., Waksman, G., Barrett, T., Crystal Structure of a vFlip-IKKgamma Complex: Insights into Viral Activation of the IKK Signalosome (2008) Molecular Cell, 30 (5), pp. 620-631. , DOI 10.1016/j.molcel.2008.04.029, PII S1097276508003602
Qin, H., Srinivasula, S.M., Wu, G., Fernandes-Alnemri, T., Alnemri, E.S., Shi, Y., Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1 (1999) Nature, 399, pp. 547-555
Srimathi, T., Robbins, S.L., Dubas, R.L., Chang, H., Cheng, H., Roder, H., Park, Y.C., Mapping of POP1-binding site on pyrin domain of ASC (2008) J. Biol. Chem., 283, pp. 15390-15398
Kam, Y., Exton, J.H., Dimerization of phospholipase D isozymes (2002) Biochemical and Biophysical Research Communications, 290 (1), pp. 375-380. , DOI 10.1006/bbrc.2001.6146
Koradi, R., Billeter, M., Wuthrich, K., MOLMOL: A program for display and analysis of macromolecular structures (1996) Journal of Molecular Graphics, 14 (1), pp. 51-55. , DOI 10.1016/0263-7855(96)00009-4
Molecular basis of the PED/PEA15 interaction with the C-terminal fragment of phospholipase D1 revealed by NMR spectroscopy
PED/PEA15 is a small protein involved in many protein-protein interactions that modulates the function of a number of key cellular effectors involved in major cell functions, including apoptosis, proliferation and glucose metabolism. In particular, PED/PEA15 interacts with the phospholipase D (PLD) isoforms 1 and 2 increasing protein kinase C-alpha isoform activity and affects both insulin-stimulated glucose transport and glucose-stimulated insulin secretion. The C-terminal portion (residues 712-1074) of PLD1, named D4, is still able to interact with PED/PEA15. In this study we characterized, by means of NMR spectroscopy, the molecular interaction of PED/PEA15 with D4 alpha, a smaller region of D4, encompassing residues 712-818, shown to have the same affinity for PED/PEA15 and to induce the same effects as D4 in PED/PEA15-overexpressing cells. Chemical shift perturbation (CSP) studies allowed to define D4 alpha binding site of PED/PEA15 and to identify a smaller region likely affected by an allosteric effect. Moreover, ELISA-like experiments showed that three 20-mer overlapping synthetic peptides, covering the 762-801 region of D4 alpha, strongly inhibit PED/PEA15-D4 alpha interaction through their binding to PED/PEA15 with K(D)s in low micromolar range. Finally, molecular details of the interaction of PED/PEA15 with one of the three peptides have been revealed by CSP and saturation transfer difference (STD) analyses. (C) 2013 Elsevier B.V. All rights reserved.
Molecular basis of the PED/PEA15 interaction with the C-terminal fragment of phospholipase D1 revealed by NMR spectroscopy