Gold nanoparticles capped by a GC-containing peptide functionalized with an RGD motif for integrin targeting(564 views) Scarí G, Porta F, Fascio U, Avvakumova S, Dal Santo V, De Simone M, Saviano M, Leone M, Del Gatto A, Pedone C, Zaccaro L
Keywords: Arginylglycylaspartic Acid, Gold Nanoparticle, Integrin, Stabilizing Agent, Amino Acid Sequence, Biocompatibility, Cell Nucleus, Colloid, Confocal Microscopy, Gc Rich Sequence, Human, Human Cell, Infrared Spectroscopy, Light Scattering, Nuclear Magnetic Resonance, Peptide Synthesis, Protein Motif, Protein Targeting, Thermogravimetry, Transmission Electron Microscopy, Tumor Cell Line, Ultraviolet Spectroscopy, Magnetic Resonance Spectroscopy, Metal Nanoparticles, Oligopeptides, Spectrophotometry, Fourier Transform Infrared,
Affiliations: *** IBB - CNR ***
Dipartimento di Chimica Inorganica Metallorganica Analitica Lamberto Malatesta, University of Milan and CNR-Istituto di Scienze e Tecnologie Molecolari, Via Venezian 21, Milan 20133, Italy.
Dipartimento di Biologia, CIMA Center, University of Milan, Via Golgi 19, Milan 20133, Italy
Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone, 16, Naples 80134, Italy
Istituto di Crystallografia, CNR, Via Amendola 122/O, Bari 70126, Italy
Dipartimento Delle Scienze Biologiche, Universitá di Napoli Federico II, Via Mezzocannone, 16, Naples 80134, Italy
C.I.M.A. Interdepartmental Centre of Advanced Microscopy, University of Milan, Via Golgi 19, Milan 20133, Italy
References: Smith, A.M., Nie, S.M., Semiconductor nanocrystals: Structure, properties, and bandgap engineering (2010) Acc. Chem. Res., 43, pp. 190-20
Eustis, S., El-Sayed, M.A., Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes (2006) Chemical Society Reviews, 35 (3), pp. 209-217. , DOI 10.1039/b514191e
Lu, A.H., Salabas, E.L., Schuth, F., Magnetic nanoparticles: Synthesis, protection, functionalization, and application (2007) Angew. Chem., Int. Ed., 46, pp. 1222-1244
Cai, W.B., Chen, X.Y., Nanoplatforms for targeted molecular imaging in living subjects (2007) Small, 3, pp. 1840-1854
Iyer, A.K., Khaled, G., Fang, J., Maeda, H., Exploiting the enhanced permeability and retention effect for tumor targeting (2006) Drug Discovery Today, 11 (17-18), pp. 812-818. , DOI 10.1016/j.drudis.2006.07.005, PII S1359644606002716
Cai, W., Gao, T., Hong, H., Sun, J., Applications of gold nanoparticles in cancer nanotechnology (2008) Nanotechnol., Sci. Appl., 1, pp. 17-32
Patra, C.R., Bhattacharya, R., Mukhopadhyay, D., Mukherjee, P., Application of Gold Nanoparticles for Targeted Therapy in Cancer (2008) J. Biomed. Nanotechnol., 4, pp. 99-132
Pangburn, T.O., Petersen, M.A., Waybrant, B., Adil, M.M., Kokkoli, E., Peptide and aptamer-functionalized nanovectors for targeted delivery of therapeutics (2009) J. Biomech. Eng., 131, pp. 0740051-07400520
Krpetic, Z., Nativo, P., Porta, F., Brust, M., A multidentate peptide for stabilization and facile bioconjugation of gold nanoparticles (2009) Bioconjugate Chem., 20, pp. 619-624
Porta, F., Speranza, G., Krpetic, Z., Dal Santo, V., Francescato, P., Scari, G., Gold nanoparticles capped by peptides (2007) Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 140 (3), pp. 187-194. , DOI 10.1016/j.mseb.2007.03.019, PII S0921510707001481
Cai, W., Chen, X., Multimodality imaging of integrin α vβ 3 expression (2006) Anticancer Agents Med. Chem., 6, pp. 407-428
Li, Z., Huang, P., Zhang, X., Lin, J., Yang, S., Liu, B., Gao, F., Cui, D., RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy (2010) Mol. Pharmaceutics, 7, pp. 94-104
De La Fuente, J.M., Berry, C.C., Riehle, M.O., Curtis, A.S., Nanoparticle targeting at cells (2006) Langmuir, 22, pp. 3286-3293
Han, Y., Albericio, F., Barany, G., Occurrence and Minimization of Cysteine Racemization during Stepwise Solid-Phase Peptide Synthesis (1997) Journal of Organic Chemistry, 62 (13), pp. 4307-4312
Wuthrich, K., (1986) NMR of Proteins and Nucleic Acids, , John Wiley & Sons: New York
Griesinger, C., Otting, G., Wüthrich, K., Ernst, R.R., Clean TOCSY for proton spin system identification in macromolecules (1988) J. Am. Chem. Soc., 110, pp. 7870-7872
Bax, A., Davis, D.G., Practical aspects of two-dimensional transverse NOE spectroscopy (1985) J. Magn. Reson., 63, pp. 207-213
Piotto, M., Saudek, V., Sklenár, V., Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions (1992) J. Biomol. NMR, 2, pp. 661-665
Dalvit, C., Efficient multiple-solvent suppression for the study of the interactions of organic solvents with biomolecules (1998) Journal of Biomolecular NMR, 11 (4), pp. 437-444
Mühlfeld, C., Rothen-Rutishauser, B., Vanhecke, D., Blank, F., Gehr, P., Ochs, M., Visualization and quantitative analysis of nanoparticles in the respiratory tract by transmission electron microscopy. Interactions of nanoparticles with pulmonary structures and cellular responses (2007) Part. Fibre Toxicol, 4, p. 11
De, M., Ghosh, P.S., Rotello, V.M., Applications of nanoparticles in biology (2008) Adv. Mater., 20, pp. 4225-4241
Rosi, N.L., Mirkin, C.A., Nanostructures in biodiagnostics (2005) Chemical Reviews, 105 (4), pp. 1547-1562. , DOI 10.1021/cr030067f
Alivisatos, P., The use of nanocrystals in biological detection (2004) Nature Biotechnology, 22 (1), pp. 47-52. , DOI 10.1038/nbt927
Boisselier, E., Astruc, D., Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity (2009) Chem. Soc. Rev., 38, pp. 1759-1782
Murphy, C.J., Gole, A.M., Stone, J.W., Sisco, P.N., Alkilany, A.M., Goldsmith, E.C., Baxter, S.C., Gold nanoparticles in biology: Beyond toxicity to cellular imaging (2008) Acc. Chem. Res., 41, pp. 1721-1730
Sperling, R.A., Rivera, G.P., Zhang, F., Zanella, M., Parak, W.J., Biological applications of gold nanoparticles (2008) Chem. Soc. Rev., 37, pp. 1896-1908
Chen, P.C., Mwakwari, S.C., Oyelere, A.K., Gold nanoparticles: From nanomedicine to nanosensing (2008) Nanotechnol., Sci. Appl., 1, pp. 45-66
Ryan, J.A., Overton, K.W., Speight, M.E., Oldenburg, C.N., Loo, L., Robarge, W., Frenzen, S., Feldheim, D.L., Cellular uptake of gold nanoparticles passivated with BSA-SV40 large T antigen conjugates (2007) Analytical Chemistry, 79 (23), pp. 9150-9159. , DOI 10.1021/ac0715524
Liu, Y., Shipton, M.K., Ryan, J., Kaufman, E.D., Franzen, S., Feldheim, D.L., Synthesis, stability, and cellular internalization of gold nanoparticles containing mixed peptide-poly(ethylene glycol) monolayers (2007) Analytical Chemistry, 79 (6), pp. 2221-2229. , DOI 10.1021/ac061578f
Sun, L., Liu, D., Wang, Z., Functional gold nanoparticle-peptide complexes as cell-targeting agents (2008) Langmuir, 24, pp. 10293-10297
Oyelere, A.K., Chen, P.C., Huang, X., El-Sayed, I.H., El-Sayed, M.A., Peptide-conjugated gold nanorods for nuclear targeting (2007) Bioconjugate Chemistry, 18 (5), pp. 1490-1497. , DOI 10.1021/bc070132i
Tkachenko, A.G., Xie, H., Liu, Y., Coleman, D., Ryan, J., Glomm, W.R., Shipton, M.K., Feldheim, D.L., Cellular trajectories of peptide-modified gold particle complexes: Comparison of nuclear localization signals and peptide transduction domains (2004) Bioconjugate Chemistry, 15 (3), pp. 482-490. , DOI 10.1021/bc034189q
Olmedo, I., Araya, E., Sanz, F., Medina, E., Arbiol, J., Toledo, P., Alvarez-Lueje, A., Kogan, M.J., How changes in the sequence of the peptide CLPFFD-NH 2 can modify the conjugation and stability of gold nanoparticles and their affinity for β-amyloid fibrils (2008) Bioconjugate Chemistry, 19 (6), pp. 1154-1163. , DOI 10.1021/bc800016y
Levy, R., Thanh, N.T.K., Christopher Doty, R., Hussain, I., Nichols, R.J., Schiffrin, D.J., Brust, M., Fernig, D.G., Rational and combinatorial design of peptide capping ligands for gold nanoparticles (2004) Journal of the American Chemical Society, 126 (32), pp. 10076-10084. , DOI 10.1021/ja0487269
Zhang, Y., Yang, M., Portney, N.G., Cui, D., Budak, G., Ozbay, E., Ozkan, M., Ozkan, C.S., (2008) Biomed. Microdevices, 10, pp. 321-328
Hunter, R.J., Foundations of colloid science (1989) Oxford Science Pub. NY, 2, pp. 739-745
Liu, X., Atwater, M., Wang, J., Huo, Q., Extinction coefficient of gold nanoparticles with different sizes and different capping ligands (2007) Colloids and Surfaces B: Biointerfaces, 58 (1), pp. 3-7. , DOI 10.1016/j.colsurfb.2006.08.005, PII S0927776506002554, Supramolecular Chemistry Applied to Interfaces
De Palma, R., Peeters, S., Van Bael, M.J., Van Den Rul, H., Bonroy, K., Laureyn, W., Mullens, J., Maes, G., Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible (2007) Chemistry of Materials, 19 (7), pp. 1821-1831. , DOI 10.1021/cm0628000
Aryal, S., Remant, B.K.C., Dharmaraj, N., Bhattarai, N., Kim, C.H.H., Kim, Y., (2006) Spectrochim. Acta, Part A, 63, pp. 160-163
Kumar, A., Ernst, R.R., Wuthrich, K., A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules (1980) Biochem. Biophys. Res. Commun., 95, pp. 1-6
Ong, H.T., Trejo, T.R., Pham, L.D., Oberg, A.L., Russell, S.J., Kah, W.P., Intravascularly Administered RGD-displaying measles viruses bind to and infect neovessel endothelial cells in vivo (2009) Mol. Ther., 17, pp. 1012-1021
Juliano, R.L., Alam, R., Dixit, V., Kang, H.M., Cell-targeting and cell-penetrating peptides for delivery of therapeutic and imaging agents (2009) Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 1, pp. 324-335
Brandenberger, C., Mühlfeld, C., Ali, Z., Lenz, A.G., Schmid, O., Parak, W.J., Gehr, P., Rothen-Rutishauser, B., Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles (2010) Small, 6, pp. 1669-1678
Chou, L.Y., Ming, K., Chan, W.C., Strategies for the intracellular delivery of nanoparticles (2011) Chem. Soc. Rev., 40, pp. 233-245
Nativo, P., Prior, I.A., Brust, M., Uptake and intracellular fate of surface-modified gold nanoparticles (2008) ACS Nano, 2, pp. 1639-1644
Gold nanoparticles capped by a GC-containing peptide functionalized with an RGD motif for integrin targeting
Gold nanoparticles were obtained by reduction of a tetrachloroaurate aqueous solution in the presence of a RGD-(GC)(2) peptide as stabilizer. As comparison, the behavior of the (GC)(2) peptide has been studied. The (GC)(2) and RGD-(GC)(2) peptides were prepared ad hoc by Fmoc synthesis. The colloidal systems have been characterized by UV-visible, TGA, ATR-FTIR, mono and bidimensional NMR techniques, confocal and transmission (TEM) microscopy, zeta-potential, and light scattering measurements. The efficient cellular uptake of Au-RGD-(GC)(2) and Au-(GC)(2) stabilized gold nanoparticles into U87 cells (human glioblastoma cells) were investigated by confocal microscopy and compared with the behavior of (GC)(2) capped gold nanoparticles. A quantitative determination of the nanoparticles taken up has been carried out by measuring the pixel brightness of the images, a measure that highlighted the importance of the RGD termination of the peptide. Insight in the cellular uptake mechanism was investigated by TEM microscopy. Various important evidences indicated the selective uptake of RGD-(GC)(2) gold nanoparticles into the nucleus.
Gold nanoparticles capped by a GC-containing peptide functionalized with an RGD motif for integrin targeting
Kállay C, Dávid A, Timári S, Nagy EM, Sanna D, Garribba E, Micera G, De Bona P, Pappalardo G, Rizzarelli E, Sóvágó I * Copper(II) complexes of rat amylin fragments(360 views) Dalton T (ISSN: 1477-9234, 1477-9226, 1477-9234electronic), 2011 Oct 14; 40(38): 9711-9721. Impact Factor:3.838 ViewExport to BibTeXExport to EndNote
Aloj L, Aurilio M, Rinaldi V, D'Ambrosio L, Tesauro D, Peitl PK, Maina T, Mansi R, Von Guggenberg E, Joosten L, Sosabowski JK, Breeman WA, De Blois E, Koelewijn S, Melis M, Waser B, Beetschen K, Reubi JC, De Jong M * The EEE project(449 views) Proc Int Cosm Ray Conf Icrc Universidad Nacional Autonoma De Mexico, 2007; 5(HEPART2): 977-980. Impact Factor:0 ViewExport to BibTeXExport to EndNote