Structural insights into and activity analysis of the antimicrobial peptide myxinidin(726 views) Cantisani M, Finamore E, Mignogna E, Falanga A, Nicoletti GF, Pedone C, Morelli G, Leone M, Galdiero M, Galdiero S
Department of Pharmacy, CIRPEB, and DFM, University of Naples Federico II, Naples, Italy Istituto di Biostrutture e Bioimmagini, CNR, Naples, Italy Center for Advanced Materials for Healthcare IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy.
Department of Experimental Medicine, II University of Naples, Naples, Italy
Dipartimento Multidisciplinare di Specialità Medico-Chirurgiche e Odontoiatriche, II University of Naples, Naples, Italy
References: Livermore, D.M., Has the era of untreatable infections arrived? (2009) J. Antimicrob. Chemother., 64 (SUPPL. 1), pp. i29-i36. , http://dx.doi.org/10.1093/jac/dkp25
Hawkey, P.M., The growing burden of antimicrobial resistance (2008) J. Antimicrob. Chemother., 62 (SUPPL. 1), pp. i1-i9. , http://dx.doi.org/10.1093/jac/dkn241
Choi, K.Y., Chow, L.N., Mookherjee, N., Cationic host defence peptides: Multifaceted role in immune modulation and inflammation (2012) J. Innate Immun., 4, pp. 361-370. , http://dx.doi.org/10.1159/000336630
Bowdish, D.M.E., Davidson, D.J., Hancock, R.E.W., A re-evaluation of the role of host defence peptides in mammalian immunity (2005) Current Protein and Peptide Science, 6 (1), pp. 35-51. , DOI 10.2174/1389203053027494
Jenssen, H., Hamill, P., Hancock, R.E.W., Peptide antimicrobial agents (2006) Clinical Microbiology Reviews, 19 (3), pp. 491-511. , DOI 10.1128/CMR.00056-05
Wiesner, J., Vilcinskas, A., Antimicrobial peptides: The ancient arm of the human immune system (2010) Virulence, 1, pp. 440-464. , http://dx.doi.org/10.4161/viru.1.5.12983
Zasloff, M., Antimicrobial peptides of multicellular organisms (2002) Nature, 415 (6870), pp. 389-395. , DOI 10.1038/415389a
Wang, Z., Wang, G., APD: The antimicrobial peptide database (2004) Nucleic Acids Research, 32 (DATABASE ISS.), pp. D590-D592
Seshadri Sundararajan, V., Gabere, M.N., Pretorius, A., Adam, S., Christoffels, A., Lehväslaiho, M., Archer, J.A., Bajic, V.B., DAMPD: A manually curated antimicrobial peptide database (2012) Nucleic Acids Res., 40, pp. D1108-D1112. , http://dx.doi.org/10.1093/nar/gkr1063
Ellis, A.E., Innate host defense mechanisms of fish against viruses and bacteria (2001) Developmental and Comparative Immunology, 25 (8-9), pp. 827-839. , DOI 10.1016/S0145-305X(01)00038-6, PII S0145305X01000386
Masso-Silva, J., Diamond, G., Antimicrobial peptides from fish (2014) Pharmaceuticals (Basel), 7, pp. 265-310. , http://dx.doi.org/10.3390/ph7030265
Rakers, S., Niklasson, L., Steinhagen, D., Kruse, C., Schauber, J., Sundell, K., Paus, R., Antimicrobial peptides (AMPs) from fish epidermis: Perspectives for investigative dermatology (2013) J. Invest. Dermatol., 133, pp. 1140-1149. , http://dx.doi.org/10.1038/jid.2012.503
Subramanian, S., Ross, N.W., MacKinnon, S.L., Myxinidin, a novel antimicrobial peptide from the epidermal mucus of hagfish, Myxine glutinosa L (2009) Mar. Biotechnol. (NY), 11, pp. 748-757. , http://dx.doi.org/10.1007/s10126-009-9189-y
Cantisani, M., Leone, M., Mignogna, E., Kampanaraki, K., Falanga, A., Morelli, G., Galdiero, M., Galdiero, S., Structure-activity relations of myxinidin, an antibacterial peptide derived from the epidermal mucus of hagfish (2013) Antimicrob. Agents Chemother., 57, pp. 5665-5673. , http://dx.doi.org/10.1128/AAC.01341-13
Cunningham, B.C., Wells, J.A., High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis (1989) Science, 244 (4908), pp. 1081-1085
Galdiero, S., Capasso, D., Vitiello, M., D'Isanto, M., Pedone, C., Galdiero, M., Role of surface-exposed loops of Haemophilus influenzae protein P2 in the mitogen-activated protein kinase cascade (2003) Infection and Immunity, 71 (5), pp. 2798-2809. , DOI 10.1128/IAI.71.5.2798-2809.2003
Chakrabartty, A., Kortemme, T., Baldwin, R.L., Helix propensities of the amino acids measured in alanine-based peptides without helix-stabilizing side-chain interactions (1994) Protein Science, 3 (5), pp. 843-852
Galdiero, S., Falanga, A., Vitiello, M., D'Isanto, M., Cantisani, M., Kampanaraki, A., Benedetti, E., Galdiero, M., Peptides containing membrane-interacting motifs inhibit herpes simplex virus type 1 infectivity (2008) Peptides, 29, pp. 1461-1471. , http://dx.doi.org/10.1016/j.peptides.2008.04.022
Dalvit, C., Efficient multiple-solvent suppression for the study of the interactions of organic solvents with biomolecules (1998) Journal of Biomolecular NMR, 11 (4), pp. 437-444
Wüthrich, K., (1986) NMR of Proteins and Nucleic Acids, , John Wiley & Sons, New York, NY
Griesinger, C., Otting, G., Wüthrich, K., Ernst, R.R., Clean TOCSY for proton spin system identification in macromolecules (1988) J. Am. Chem. Soc., 110, pp. 7870-7872. , http://dx.doi.org/10.1021/ja00231a044
Kumar, A., Ernst, R.R., Wüthrich, K., A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules (1980) Biochem. Biophys. Res. Commun., 95, pp. 1-6. , http://dx.doi.org/10.1016/0006-291X(80)90695-6
Piantini, U., Sorensen, O.W., Ernst, R.R., Multiple quantum filters for elucidating NMR coupling networks (1982) J. Am. Chem. Soc., 104, pp. 6800-6801. , http://dx.doi.org/10.1021/ja00388a062
Bartels, C., Xia, T.H., Billeter, M., Güntert, P., Wüthrich, K., The program XEASY for computer-supported NMR spectral analysis of biological macromolecules (1995) J. Biomol. NMR, 6, pp. 1-10. , http://dx.doi.org/10.1007/BF00417486
Herrmann, T., Guntert, P., Wuthrich, K., Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA (2002) Journal of Molecular Biology, 319 (1), pp. 209-227. , DOI 10.1016/S0022-2836(02)00241-3
Koradi, R., Billeter, M., Wüthrich, K., MOLMOL: A program for display and analysis of macromolecular structures (1996) J. Mol. Graph., 14, pp. 51-55+29-32
Doreleijers, J.F., Sousa Da Silva, A.W., Krieger, E., Nabuurs, S.B., Spronk, C.A., Stevens, T.J., Vranken, W.F., Vuister, G.W., CING: An integrated residue-based structure validation program suite (2012) J. Biomol. NMR, 54, pp. 267-283. , http://dx.doi.org/10.1007/s10858-012-9669-7
Mosmann, T., Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays (1983) Journal of Immunological Methods, 65 (1-2), pp. 55-63
Ames, G.F., Lipids of Salmonella Typhimurium and Escherichia coli: Structure and metabolism (1968) J. Bacteriol., 95, pp. 833-843
Buck, M., Trifluoroethanol and colleagues: Cosolvents come of age. Recent studies with peptides and proteins (1998) Quarterly Reviews of Biophysics, 31 (3), pp. 297-355. , DOI 10.1017/S003358359800345X
Wishart, D.S., Sykes, B.D., Richards, F.M., Relationship between nuclear magnetic resonance chemical shift and protein secondary structure (1991) Journal of Molecular Biology, 222 (2), pp. 311-333
Jiang, Z., Vasil, A.I., Gera, L., Vasil, M.L., Hodges, R.S., Rational design of α-helical antimicrobial peptides to target Gram-negative pathogens, Acinetobacter baumannii and Pseudomonas aeruginosa: Utilization of charge, 'specificity determinants,' total hydrophobicity, hydrophobe type and location as design parameters to improve the therapeutic ratio (2011) Chem. Biol. Drug Des., 77, pp. 225-240. , http://dx.doi.org/10.1111/j.1747-0285.2011.01086.x
Hawrani, A., Howe, R.A., Walsh, T.R., Dempsey, C.E., Origin of low mammalian cell toxicity in a class of highly active antimicrobial amphipathic helical peptides (2008) J. Biol. Chem., 283, pp. 18636-18645. , http://dx.doi.org/10.1074/jbc.M709154200
Juretić, D., Vukičević, D., Ilić, N., Antcheva, N., Tossi, A., Computational design of highly selective antimicrobial peptides (2009) J. Chem. Infect. Model., 49, pp. 2873-2882. , http://dx.doi.org/10.1021/ci900327a
Giangaspero, A., Sandri, L., Tossi, A., Amphipathic alpha-helical antimicrobial peptides (2001) Eur. J. Biochem., 268, pp. 5589-5600. , http://dx.doi.org/10.1046/j.1432-1033.2001.02494.x
Tossi, A., Sandri, L., Giangaspero, A., Amphipathic, alpha-helical antimicrobial peptides (2000) Biopolymers, 55, pp. 4-30. , http://dx.doi.org/10.1002/1097-0282(2000)55:14::AID-BIP303.0.CO
Galdiero, S., Russo, L., Falanga, A., Cantisani, M., Vitiello, M., Fattorusso, R., Malgieri, G., Isernia, C., Structure and orientation of the gH625-644 membrane interacting region of herpes simplex virus type 1 in a membrane mimetic system (2012) Biochemistry, 51, pp. 3121-3128. , http://dx.doi.org/10.1021/bi201589m
Falanga, A., Tarallo, R., Vitiello, G., Vitiello, M., Perillo, E., Cantisani, M., D'Errico, G., Galdiero, S., Biophysical characterization and membrane interaction of the two fusion loops of glycoprotein B from herpes simplex type I virus (2012) PLoS One, 7, pp. e32186. , http://dx.doi.org/10.1371/journal.pone.0032186
Dempsey, C.E., Hawrani, A., Howe, R.A., Walsh, T.R., Amphipathic antimicrobial peptides-from biophysics to therapeutics? (2010) Protein Pept. Lett., 17, pp. 1334-1344. , http://dx.doi.org/10.2174/0929866511009011334
Matsuzaki, K., Control of cell selectivity of antimicrobial peptides (2009) Biochim. Biophys. Acta, 1788, pp. 1687-1692. , http://dx.doi.org/10.1016/j.bbamem.2008.09.013
Bhargava, K., Feix, J.B., Membrane Binding, Structure, and Localization of Cecropin-Mellitin Hybrid Peptides: A Site-Directed Spin-Labeling Study (2004) Biophysical Journal, 86 (1 I), pp. 329-336
Turner, J., Cho, Y., Dinh, N.-N., Waring, A.J., Lehrer, R.I., Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils (1998) Antimicrobial Agents and Chemotherapy, 42 (9), pp. 2206-2214
Ladokhin, A.S., White, S.H., Folding of amphipathic α-helices on membranes: Energetics of helix formation by melittin (1999) Journal of Molecular Biology, 285 (4), pp. 1363-1369. , DOI 10.1006/jmbi.1998.2346
Matsuzaki, K., Nakamura, A., Murase, O., Sugishita, K., Fujii, N., Miyajima, K., Modulation of magainin 2-lipid bilayer interactions by peptide charge (1997) Biochemistry, 36, pp. 2104-2111. , http://dx.doi.org/10.1021/bi961870p
Ma, Q.Q., Shan, A.S., Dong, N., Gu, Y., Sun, W.Y., Hu, W.N., Feng, X.J., Cell selectivity and interaction with model membranes of Val/Arg-rich peptides (2011) J. Pept. Sci., 17, pp. 520-526. , http://dx.doi.org/10.1002/psc.1360
Wilman, R.H., Jiye, S., Deane, M.C., Helix kinks are equally prevalent in soluble and membrane proteins (2014) Proteins Struct. Funct. Bioinform., , http://dx.doi.org/10.1002/prot.24550, in press
Scudiero, O., Galdiero, S., Cantisani, M., Di Noto, R., Vitiello, M., Galdiero, M., Naclerio, G., Castaldo, G., Novel synthetic, salt-resistant analogs of human beta-defensins 1 and 3 endowed with enhanced antimicrobial activity (2010) Antimicrob. Agents Chemother., 54, pp. 2312-2322. , http://dx.doi.org/10.1128/AAC.01550-09
Pasupuleti, M., Walse, B., Svensson, B., Malmsten, M., Schmidtchen, A., Rational design of antimicrobial C3a analogues with enhanced effects against staphylococci using an integrated structure and function-based approach (2008) Biochemistry, 47, pp. 9057-9070. , http://dx.doi.org/10.1021/bi800991e
Harder, J., Isolation and characterization of human beta-defensin3, a novel human inducible peptide antibiotic (2001) J. Biol. Chem., 276, pp. 5707-5713. , http://dx.doi.org/10.1074/jbc.M008557200
Epand, R.F., Pollard, J.E., Wright, J.O., Savage, P.B., Epand, R.M., Depolarization, bacterial membrane composition, and the antimicrobial action of ceragenins (2010) Antimicrob. Agents Chemother., 54, pp. 3708-3713. , http://dx.doi.org/10.1128/AAC.00380-10
Structural insights into and activity analysis of the antimicrobial peptide myxinidin
The marine environment has been poorly explored in terms of potential new molecules possessing antibacterial activity. Antimicrobial peptides (AMPs) offer a new potential class of pharmaceuticals; however, further optimization is needed if AMPs are to find broad use as antibiotics. We focused our studies on a peptide derived from the epidermal mucus of hagfish (Myxine glutinosa L.), which was previously characterized and showed high antimicrobial activity against human and fish pathogens. In the present work, the activities of myxinidin peptide analogues were analyzed with the aim of widening the original spectrum of action of myxinidin by suitable changes in the peptide primary structure. The analysis of key residues by alanine scanning allowed for the design of novel peptides with increased activity. We identified the amino acids that are of the utmost importance for the observed antimicrobial activities against a set of pathogens comprising both Gram-negative and Gram-positive bacteria. Overall, optimized bactericidal potency was achieved by adding a tryptophan residue at the N terminus and by the simultaneous substitution of residues present in positions 3, 4, and 11 with arginine. These results indicate that the myxinidin analogues emerge as an attractive alternative for treating drug-resistant infectious diseases and provide key insights into a rational design for novel agents against these pathogens. Copyright 2014, American Society for Microbiology. All Rights Reserved.
Structural insights into and activity analysis of the antimicrobial peptide myxinidin
Petraglia F, Singh AA, Carafa V, Nebbioso A, Conte M, Scisciola L, Valente S, Baldi A, Mandoli A, Petrizzi VB, Ingenito C, De Falco S, Cicatiello V, Apicella I, Janssen-megens EM, Kim B, Yi G, Logie C, Heath S, Ruvo M, Wierenga ATJ, Flicek P, Yaspo ML, Della Valle V, Bernard O, Tomassi S, Novellino E, Feoli A, Sbardella G, Gut I, Vellenga E, Stunnenberg HG, Mai A, Martens JHA, Altucci L * Combined HAT/EZH2 modulation leads to cancer-selective cell death(288 views) Oncotarget (ISSN: 1949-2553electronic, 1949-2553linking), 2018 May 22; 9(39): 25630-25646. Impact Factor:5.008 ViewExport to BibTeXExport to EndNote
Kállay C, Dávid A, Timári S, Nagy EM, Sanna D, Garribba E, Micera G, De Bona P, Pappalardo G, Rizzarelli E, Sóvágó I * Copper(II) complexes of rat amylin fragments(360 views) Dalton T (ISSN: 1477-9234, 1477-9226, 1477-9234electronic), 2011 Oct 14; 40(38): 9711-9721. Impact Factor:3.838 ViewExport to BibTeXExport to EndNote
Aloj L, Aurilio M, Rinaldi V, D'Ambrosio L, Tesauro D, Peitl PK, Maina T, Mansi R, Von Guggenberg E, Joosten L, Sosabowski JK, Breeman WA, De Blois E, Koelewijn S, Melis M, Waser B, Beetschen K, Reubi JC, De Jong M * The EEE project(449 views) Proc Int Cosm Ray Conf Icrc Universidad Nacional Autonoma De Mexico, 2007; 5(HEPART2): 977-980. Impact Factor:0 ViewExport to BibTeXExport to EndNote