High-resolution structures of two complexes between thrombin and thrombin-binding aptamer shed light on the role of cations in the aptamer inhibitory activity
High-resolution structures of two complexes between thrombin and thrombin-binding aptamer shed light on the role of cations in the aptamer inhibitory activity(561 views) Russo Krauss I, Merlino A, Randazzo A, Novellino E, Mazzarella L, Sica F
Keywords: Aptamer, Calcium Ion, Cation, Potassium Ion, Thrombin, Thrombin Binding Aptamer, Unclassified Drug, Article, Circular Dichroism, Crystallography, Human, Priority Journal, Protein Analysis, Protein Function, Protein Protein Interaction, Protein Stability, Protein Structure, Nucleotide, X-Ray, Models, Molecular, Sodium,
Affiliations: *** IBB - CNR ***
Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, I-80126 Napoli, Italy
Istituto di Biostrutture e Bioimmagini, C.N.R., Via Mezzocannone 16, I-80134 Napoli, Italy
Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, Via D. Montesano 49, I-80131 Napoli, Italy
References: Gellert, M., Lipsett, M.N., Davies, D.R., Helix formation by guanylic acid (1962) Proc. Natl. Acad. Sci. USA, 48, pp. 2013-201
Williamson, J.R., G-quartet structures in telomeric DNA (1994) Annu. Rev. Biophys. Biomol. Struct., 23, pp. 703-730
Bock, L.C., Griffin, L.C., Latham, J.A., Vermaas, E.H., Toole, J.J., Selection of single-stranded DNA molecules that bind and inhibit human thrombin (1992) Nature, 355, pp. 564-566
Burke, J.M., Berzal-Herranz, A., In vitro selection and evolution of RNA: Applications for catalytic RNA, molecular recognition, and drug discovery (1993) FASEB J., 7, pp. 106-112
Huntington, J.A., Molecular recognition mechanisms of thrombin (2005) J. Thromb. Haemost., 3, pp. 1861-1872
MacAya, R.F., Schultze, P., Smith, F.W., Roe, J.A., Feigon, J., Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution (1993) Proc. Natl. Acad. Sci. USA, 90, pp. 3745-3749
Wang, K.Y., McCurdy, S., Shea, R.G., Swaminathan, S., Bolton, P.H., A DNA aptamer which binds to and inhibits thrombin exhibits a new structural motif for DNA (1993) Biochemistry, 32, pp. 1899-1904
Mao, X., Marky, L.A., Gmeiner, W.H., NMR structure of the thrombin-binding DNA aptamer stabilized by Sr2+ (2004) J. Biomol. Struct. Dyn., 22, pp. 25-33
Martino, L., Virno, A., Randazzo, A., Virgilio, A., Esposito, V., Giancola, C., Bucci, M., Mayol, L., A new modified thrombin binding aptamer containing a 50-50 inversion of polarity site (2006) Nucleic Acids Res., 34, pp. 6653-6662
Nallagatla, S.R., Heuberger, B., Haque, A., Switzer, C., Combinatorial synthesis of thrombin-binding aptamers containing iso-guanine (2009) J. Comb. Chem., 11, pp. 364-369
Pagano, B., Martino, L., Randazzo, A., Giancola, C., Stability and binding properties of a modified thrombin binding aptamer (2008) Biophys. J., 94, pp. 562-569
Nagatoishi, S., Isono, N., Tsumoto, K., Sugimoto, N., Loop residues of thrombin-binding DNA aptamer impact G-quadruplex stability and thrombin binding (2011) Biochimie, 93, pp. 1231-1238
Pasternak, A., Hernandez, F.J., Rasmussen, L.M., Vester, B., Wengel, J., Improved thrombin binding aptamer by incorporation of a single unlocked nucleic acid monomer (2011) Nucleic Acids Res., 39, pp. 1155-1164
Zaitseva, M., Kaluzhny, D., Shchyolkina, A., Borisova, O., Smirnov, I., Pozmogova, G., Conformation and thermostability of oligonucleotide d(GGTTGGTGTGGTTGG) containing thiophosphoryl internucleotide bonds at different positions (2010) Biophys. Chem., 146, pp. 1-6
Saneyoshi, H., Mazzini, S., Avino, A., Portella, G., Gonzalez, C., Orozco, M., Marquez, V.E., Eritja, R., Conformationally rigid nucleoside probes help understand the role of sugar pucker and nucleobase orientation in the thrombin-binding aptamer (2009) Nucleic Acids Res., 37, pp. 5589-5601
Bonifacio, L., Church, F.C., Jarstfer, M.B., Effect of locked-nucleic acid on a biologically active G-quadruplex. A structure-activity relationship of the thrombin aptamer (2008) Int. J. Mol. Sci., 9, pp. 422-433
Kankia, B.I., Marky, L.A., Folding of the thrombin aptamer into a G-quadruplex with Sr(2+): Stability, heat, and hydration (2001) J. Am. Chem. Soc., 123, pp. 10799-10804
Mao, X.A., Gmeiner, W.H., NMR study of the folding-unfolding mechanism for the thrombin-binding DNA aptamer d(GGTTGGTGTGGTTGG) (2005) Biophys. Chem., 113, pp. 155-160
Mayer, G., Muller, J., MacK, T., Freitag, D.F., Hover, T., Potzsch, B., Heckel, A., Differential regulation of protein subdomain activity with caged bivalent ligands (2009) ChemBioChem, 10, pp. 654-657
Smirnov, I., Shafer, R.H., Effect of loop sequence and size on DNA aptamer stability (2000) Biochemistry, 39, pp. 1462-1468
Tang, C.F., Shafer, R.H., Engineering the quadruplex fold: Nucleoside conformation determines both folding topology and molecularity in guanine quadruplexes (2006) J. Am. Chem. Soc., 128, pp. 5966-5973
Marathias, V.M., Wang, K.Y., Kumar, S., Pham, T.Q., Swaminathan, S., Bolton, P.H., Determination of the number and location of the manganese binding sites of DNA quadruplexes in solution by EPR and NMR in the presence and absence of thrombin (1996) J. Mol. Biol., 260, pp. 378-394
Nimjee, S.M., Rusconi, C.P., Harrington, R.A., Sullenger, B.A., The potential of aptamers as anticoagulants (2005) Trends Cardiovasc. Med., 15, pp. 41-45
Griffin, L.C., Tidmarsh, G.F., Bock, L.C., Toole, J.J., Leung, L.L., In vivo anticoagulant properties of a novel nucleotide-based thrombin inhibitor and demonstration of regional anticoagulation in extracorporeal circuits (1993) Blood, 81, pp. 3271-3276
Li, W.X., Kaplan, A.V., Grant, G.W., Toole, J.J., Leung, L.L., A novel nucleotide-based thrombin inhibitor inhibits clot-bound thrombin and reduces arterial platelet thrombus formation (1994) Blood, 83, pp. 677-682
Gatto, B., Palumbo, M., Sissi, C., Nucleic acid aptamers based on the G-quadruplex structure: Therapeutic and diagnostic potential (2009) Curr. Med. Chem., 16, pp. 1248-1265
Tennico, Y.H., Hutanu, D., Koesdjojo, M.T., Bartel, C.M., Remcho, V.T., On-chip aptamer-based sandwich assay for thrombin detection employing magnetic beads and quantum dots (2010) Anal. Chem., 82, pp. 5591-5597
Liang, G., Cai, S., Zhang, P., Peng, Y., Chen, H., Zhang, S., Kong, J., Magnetic relaxation switch and colorimetric detection of thrombin using aptamer-functionalized gold-coated iron oxide nanoparticles (2011) Anal. Chim. Acta, 689, pp. 243-249
Platt, M., Rowe, W., Wedge, D.C., Kell, D.B., Knowles, J., Day, P.J., Aptamer evolution for array-based diagnostics (2009) Anal. Biochem., 390, pp. 203-205
Padmanabhan, K., Padmanabhan, K.P., Ferrara, J.D., Sadler, J.E., Tulinsky, A., The structure of alpha-thrombin inhibited by a 15-mer single-stranded DNA aptamer (1993) J. Biol. Chem., 268, pp. 17651-17654
Padmanabhan, K., Tulinsky, A., An ambiguous structure of a DNA 15-mer thrombin complex (1996) Acta Crystallogr. D Biol. Crystallogr., 52, pp. 272-282
Kelly, J.A., Feigon, J., Yeates, T.O., Reconciliation of the X-ray and NMR structures of the thrombin-binding aptamer d(G GTTGGTGTGGTTGG) (1996) J. Mol. Biol., 256, pp. 417-422
Tsiang, M., Gibbs, C.S., Griffin, L.C., Dunn, K.E., Leung, L.L., Selection of a suppressor mutation that restores affinity of an oligonucleotide inhibitor for thrombin using in vitro genetics (1995) J. Biol. Chem., 270, pp. 19370-19376
Tasset, D.M., Kubik, M.F., Steiner, W., Oligonucleotide inhibitors of human thrombin that bind distinct epitopes (1997) J. Mol. Biol., 272, pp. 688-698
Baldrich, E., O'sullivan, C.K., Ability of thrombin to act as molecular chaperone inducing formation of quadruplex structure of thrombin-binding aptamer (2005) Anal. Biochem., 341, pp. 194-197
Russo Krauss, I., Merlino, A., Giancola, C., Randazzo, A., Mazzarella, L., Sica, F., Thrombin-aptamer recognition: A revealed ambiguity (2011) Nucleic Acids Res., 39, pp. 7858-7867
Otwinowsky, Z., Minor, W., Processing of X-ray diffraction data collected in oscillation mode (1997) Methods Enzymol., 276, pp. 307-326
McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C., Read, R.J., Likelihood-enhanced fast translation functions (2005) Acta Crystallogr. D Biol. Crystallogr., 61, pp. 458-464
Brunger, A.T., Adams, P.D., Clore, G.M., Delano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Pannu, N.S., Crystallography & NMR system: A new software suite for macromolecular structure determination (1998) Acta Crystallogr. D Biol. Crystallogr., 54 (PART 5), pp. 905-921
Jones, T.A., Zou, J.Y., Cowan, S.W., Kjeldgaard, M., Improved methods for building protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr. A, 47 (PART 1 2), pp. 110-119
The CCP4 suite: Programs for protein crystallography (1994) Acta Crystallogr. D Biol. Crystallogr., 50, pp. 760-763. , Collaborative Computational Project
Laskowski, R.A., MacArthur, M.W., Moss, M.D., Thorton, J.M., PROCHECK: A program to check the stereochemical quality of protein structure (1993) J. Appl. Crystallogr., 26, pp. 283-291
Hooft, R.W., Vriend, G., Sander, C., Abola, E.E., Errors in protein structures (1996) Nature, 381, p. 272
Lawrence, M.C., Colman, P.M., Shape complementarity at protein/protein interfaces (1993) J. Mol. Biol., 234, pp. 946-950
Wei, D., Parkinson, G., Reszka, A.P., Neidle, S., Crystal structure of a c-kit promoter quadruplex reveals the structural role of metal ions and water molecules in maintaining loop conformation (2012) Nucleic Acids Res., 40, pp. 4691-4700
Becker, R.C., Povsic, T., Cohen, M.G., Rusconi, C.P., Sullenger, B., Nucleic acid aptamers as antithrombotic agents: Opportunities in extracellular therapeutics (2010) Thromb. Haemost., 103, pp. 586-595
Hud, N.V., Smith, F.W., Anet, F.A., Feigon, J., The selectivity for K+ versus Na+ in DNA quadruplexes is dominated by relative free energies of hydration: A thermodynamic analysis by 1H NMR (1996) Biochemistry, 35, pp. 15383-15390
Lane, A.N., Chaires, J.B., Gray, R.D., Trent, J.O., Stability and kinetics of G-quadruplex structures (2008) Nucleic Acids Res., 36, pp. 5482-5515
Kim, S.Y., Hwang, K.Y., Kim, S.H., Sung, H.C., Han, Y.S., Cho, Y., Structural basis for cold adaptation. Sequence biochemical properties, and crystal structure of malate dehydrogenase from a psychrophile Aquaspirillium arcticum (1999) J. Biol. Chem., 274, pp. 11761-11767
Hong, E.S., Yoon, H.J., Kim, B., Yim, Y.H., So, H.Y., Shin, S.K., Mass spectrometric studies of alkali metal ion binding on thrombin-binding aptamer DNA (2010) J. Am. Soc. Mass Spectrom., 21, pp. 1245-1255
Marathias, V.M., Bolton, P.H., Determinants of DNA quadruplex structural type: Sequence and potassium binding (1999) Biochemistry, 38, pp. 4355-4364
Reshetnikov, R.V., Golovin, A.V., Spiridonova, V., Kopylov, A.M., Sponer, J., Structural dynamics of thrombin-binding DNA aptamer d(GGTTGGTGTGGTTGG) quadruplex DNA studied by large-scale explicit solvent simulations (2010) J. Chem. Theory Comput., 6, pp. 3003-3014
Trajkovski, M., Sket, P., Plavec, J., Cation localization and movement within DNA thrombin binding aptamer in solution (2009) Org. Biomol. Chem., 7, pp. 4677-4684
High-resolution structures of two complexes between thrombin and thrombin-binding aptamer shed light on the role of cations in the aptamer inhibitory activity
The G-quadruplex architecture is a peculiar structure adopted by guanine-rich oligonucleotidic sequences, and, in particular, by several aptamers, including the thrombin-binding aptamer (TBA) that has the highest inhibitory activity against human alpha-thrombin. A crucial role in determining structure, stability and biological properties of G-quadruplexes is played by ions. In the case of TBA, K(+) ions cause an enhancement of the aptamer clotting inhibitory activity. A detailed picture of the interactions of TBA with the protein and with the ions is still lacking, despite the importance of this aptamer in biomedical field for detection and inhibition of alpha-thrombin. Here, we fill this gap by presenting a high-resolution crystallographic structural characterization of the thrombin-TBA complex formed in the presence of Na(+) or K(+) and a circular dichroism study of the structural stability of the aptamer both free and complexed with alpha-thrombin, in the presence of the two ionic species. The results indicate that the different effects exerted by Na(+) and K(+) on the inhibitory activity of TBA are related to a subtle perturbation of a few key interactions at the protein-aptamer interface. The present data, in combination with those previously obtained on the complex between alpha-thrombin and a modified aptamer, may allow the design of new TBA variants with a pharmacological performance enhancement.
High-resolution structures of two complexes between thrombin and thrombin-binding aptamer shed light on the role of cations in the aptamer inhibitory activity
High-resolution structures of two complexes between thrombin and thrombin-binding aptamer shed light on the role of cations in the aptamer inhibitory activity
Petraglia F, Singh AA, Carafa V, Nebbioso A, Conte M, Scisciola L, Valente S, Baldi A, Mandoli A, Petrizzi VB, Ingenito C, De Falco S, Cicatiello V, Apicella I, Janssen-megens EM, Kim B, Yi G, Logie C, Heath S, Ruvo M, Wierenga ATJ, Flicek P, Yaspo ML, Della Valle V, Bernard O, Tomassi S, Novellino E, Feoli A, Sbardella G, Gut I, Vellenga E, Stunnenberg HG, Mai A, Martens JHA, Altucci L * Combined HAT/EZH2 modulation leads to cancer-selective cell death(288 views) Oncotarget (ISSN: 1949-2553electronic, 1949-2553linking), 2018 May 22; 9(39): 25630-25646. Impact Factor:5.008 ViewExport to BibTeXExport to EndNote